Background: Color formation in Hylocereus spp. (pitayas) has been ascribed to the accumulation of betalains. However, several studies have reported the presence of anthocyanins in pitaya fruit and their potential role in color formation has not yet been explored. In this study, we profiled metabolome and transcriptome in fruit of three cultivars with contrasting flesh colors (red, pink and white) to investigate their nutritional quality and the mechanism of color formation involving anthocyanins. Results: Results revealed that pitaya fruit is enriched in amino acid, lipid, carbohydrate, polyphenols, vitamin and other bioactive components with significant variation among the three cultivars. Anthocyanins were detected in the fruit flesh and accumulation levels of Cyanidin 3-glucoside, Cyanidin 3-rutinoside, Delphinidin 3-O-(6-Omalonyl)-beta-glucoside-3-O-beta-glucoside and Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-Dglucoside) positively correlated with the reddish coloration. Transcriptome data showed that the white cultivar tends to repress the anthocyanin biosynthetic pathway and divert substrates to other competing pathways. This perfectly contrasted with observations in the red cultivar. The pink cultivar however seems to keep a balance between the anthocyanin biosynthetic pathway and the competing pathways. We identified several active transcription factors of the MYB and bHLH families which can be further investigated as potential regulators of the anthocyanin biosynthetic genes. Conclusions: Collectively, our results suggest that anthocyanins partly contribute to color formation in pitaya fruit. Future studies aiming at manipulating the biosynthetic pathways of anthocyanins and betalains will better clarify the exact contribution of each pathway in color formation in pitayas. This will facilitate efforts to improve pitaya fruit quality and appeal.