Due to increased global demand for vegetable oils, diversification of the supply chain with sustainable sources is necessary. Acrocomia aculeata has recently gained attention as a multi-purpose, sustainable crop for oil production. However, the information necessary for effective selection of promising varieties for agricultural production is lacking. The aim of this study was to assess variability in fruit morphology and oil composition of individual Acrocomia aculeata plants growing wild in different climatic regions of Costa Rica. Fruits at the same ripening stage were collected at three locations, and biometric features, oil content, fatty acid composition of oils from kernels and pulp, as well as fiber composition of husks were determined. Biometric parameters showed high variability among the regions assessed. Moreover, oil content and relative proportions of unsaturated fatty acids were higher at the most tropical location, whereas lauric acid content was lowest under these conditions, indicating a potential environmental effect on oil composition. Pulp oil content correlated positively with annual precipitation and relative humidity, but no clear relation to temperature was observed. The oil chemical composition was similar to that reported for Elaeis guineensis, suggesting that Acrocomia aculeata from Costa Rica may be a suitable alternative for industrial applications currently based on African palm oil. Analysis of husks as a coproduct revealed the possibility of obtaining materials with high lignin and low water and ash contents that could be used as a solid bioenergy source. In conclusion, Acrocomia aculeata oil is a promising alternative for industrial applications currently based on African palm oil and byproducts of its oil production could find additional use as a renewable energy source.
The microalgae Phaeodactylum tricornutum (PT) contains valuable nutrients such as proteins, polyunsaturated omega-3 fatty acids (n-3 PUFA), particularly eicosapentaenoic acid (EPA) and some docosahexaenoic acid (DHA), carotenoids such as fucoxanthin (FX), and beta-glucans, which may confer health benefits. In a randomized intervention trial involving 22 healthy individuals, we administered for two weeks in a crossover manner the whole biomass of PT (5.3 g/day), or fish oil (FO) containing equal amounts of EPA and DHA (together 300 mg/day). In an additional experiment, sea fish at 185 g/week resulting in a similar EPA and DHA intake was administered in nine individuals. We determined the bioavailability of fatty acids and carotenoids and assessed safety parameters. The intake of PT resulted in a similar increase in the n-3 PUFA and EPA content and a decrease in the PUFA n-6:n-3 ratio in plasma. PT intake caused an uptake of FX that is metabolized to fucoxanthinol (FXOH) and amarouciaxanthin A (AxA). No relevant adverse effects occurred following PT consumption. The study shows that PT is a safe and effective source of EPA and FX—and likely other nutrients—and therefore should be considered as a future sustainable food item.
11′-α-Tocomonoenol (11′-αT1) is structurally related to vitamin E and has been quantified in the microalgae Tetraselmis sp. and Nannochloropsis oceanica. However, it is not known whether 11′-αT1 is present in other microalgae independent of species and origin. The aim of this study was to analyze the tocochromanol profiles of Chlorella sorokiniana, Nannochloropsis limnetica, and Tetraselmis suecica and to determine if 11′-αT1 is present in these microalgae. Cultured microalgae were freeze-dried and the presence and identity of α-tocomonoenols were confirmed by LC-MSn (liquid chromatography coupled to mass spectroscopy) and GC-MS (gas chromatography coupled to mass spectroscopy). Tocochromanol profiles were determined by HPLC-FLD (liquid chromatography with fluorescence detection) and fatty acid profiles (as fatty acid methyl esters; FAME) by GC-MS. As confirmed by LC-MSn and GC-MS, 11′-αT1 was the dominant αT1 isomer in cultured microalgae instead of 12′-αT1, the isomer also known as marine-derived tocopherol. αT1 represented less than 1% of total tocochromanols in all analyzed samples and tended to be more abundant in microalgae with higher proportions of polyunsaturated fatty acids. In conclusion, our findings confirm that αT1 is not restricted to terrestrial photosynthetic organisms, but can also accumulate in microalgae of different species, with 11′-αT1—and not the marine-derived tocopherol (12′-αT1)—as the predominant αT1 isomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.