Purpose
This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.
Design/methodology/approach
The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.
Findings
The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.
Originality/value
The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.