Obesity is associated with a state of chronic low-grade inflammation, which contributes to insulin resistance and type 2 diabetes. However, the molecular mechanisms that link obesity to inflammation are not fully understood. Follistatin-like 1 (FSTL1) is a novel proinflammatory cytokine that is expressed in adipose tissue and secreted by preadipocytes/adipocytes. We aimed to test whether FSTL1 could have a role in obesity-induced inflammation and insulin resistance. It was found that FSTL1 expression was markedly decreased during differentiation of 3T3-L1 preadipocytes but reinduced by TNF-α. Furthermore, a significant increase in FSTL1 levels was observed in adipose tissue of obese ob/ob mice, as well as in serum of overweight/obese subjects. Mechanistic studies revealed that FSTL1 induced inflammatory responses in both 3T3-L1 adipocytes and RAW264.7 macrophages. The expression of proinflammatory mediators including IL-6, TNF-α, and MCP-1 was upregulated by recombinant FSTL1 in a dose-dependent manner, paralleled with activation of the IKKβ-NFκB and JNK signaling pathways in the two cell lines. Moreover, FSTL1 impaired insulin signaling in 3T3-L1 adipocytes, as revealed by attenuated phosphorylation of both Akt and IRS-1 in response to insulin stimulation. Together, our results suggest that FSTL1 is a potential mediator of inflammation and insulin resistance in obesity.
The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.Nearly three-quarters of the Earth's surface area is covered by ocean, the average depth of which is 3800 m, implying that the vast majority of our planet comprises deep-sea environments. The deep sea is one of the most mysterious and unexplored environments on the Earth, and it supports diverse microbial communities that play important roles in biogeochemical cycles [1]. The deep sea is also recognised as an extreme environment, as it is characterised by the absence of sunlight and the presence of predominantly low temperatures and high hydrostatic pressures, and these environmental conditions become even more challenging in particular habitats, such as deep-sea hydrothermal vents with their extremely high temperatures of >400 • C, deep hypersaline anoxic basins (DHABs) with their extremely high salinities and abysses of up to 11 km depth with their extremely high pressures.Deep-sea extremophiles are living organisms that can survive and proliferate in deep-sea environments that have extreme physical (pressure and temperature) and geochemical (pH, salinity and redox potential) conditions that are lethal to other organisms. The majority of deep-sea extremophiles belong to the prokaryotes, which are microorganisms in the domains of Archaea and Bacteria [2,3].These extremophilic microorganisms are functionally diverse and widely distributed in taxonomy [4], and they are classified into thermophiles (55 • C to 121 • C), psychrophiles (−2 • C to 20 • C), halophiles (2-5 M NaCl or KCl), piezophiles (>500 atmospheres), alkalophiles (pH > 8), acidophiles (pH < 4) and metalophiles (high concentrations of metals, e.g., copper, zinc, cadmium and arsenic) according to the extreme environments in which they grow and the extreme conditions they can tolerate. Ma...
Four novel compounds, chaephilone C (1), chaetoviridides A–C (2–4), were obtained from the culture of a deep sea derived fungus Chaetomium sp. NA-S01-R1, together with four known compounds—chaetoviridin A (5), chaetoviridine E (6), chaetomugilin D (7) and cochliodone A (8). Their structures, including absolute configurations, were assigned based on NMR, MS and time-dependent density functional theory (TD-DFT) ECD calculations. A plausible biogenetic pathway for compounds 1–3 was proposed. Compounds 2 and 3 exhibited antibacterial activities against Vibrio rotiferianus and Vibrio vulnificus. Compounds 1, 3 and 4 displayed similar anti-methicillin resistant Staphylococcus aureus (anti-MRSA) activities in comparison to chloramphenicol. Compound 2 showed the most potent cytotoxic activities towards the Hep G2 cell and compounds 1 and 3 demonstrated relatively stronger cytotoxic activities than the other compounds against the HeLa cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.