Spexin mRNA and protein are widely expressed in rat tissues and associate with weight loss in rodents of diet-induced obesity. Its location in endocrine and epithelial cells has also been suggested. Spexin is a novel peptide that involves weight loss in rodents of diet-induced obesity. Therefore, we aimed to examine its expression in human tissues and test whether spexin could have a role in glucose and lipid metabolism in type 2 diabetes mellitus (T2DM). The expression of the spexin gene and immunoreactivity in the adrenal gland, skin, stomach, small intestine, liver, thyroid, pancreatic islets, visceral fat, lung, colon, and kidney was higher than that in the muscle and connective tissue. Immunoreactive serum spexin levels were reduced in T2DM patients and correlated with fasting blood glucose (FBG, r=-0.686, P<0.001), hemoglobin A1c (HbA1c, r=-0.632, P<0.001), triglyceride (TG, r=-0.236, P<0.001) and low density lipoprotein-cholesterol (LDL-C, r=-0.382, P<0.001). A negative correlation of blood glucose with spexin was observed during oral glucose tolerance test (OGTT). Spexin is intensely expressed in normal human endocrine and epithelial tissues, indicating that spexin may be involved in physiological functions of endocrine and in several other tissues. Circulating spexin levels are low in T2DM patients and negatively related to blood glucose and lipids suggesting that the peptide may play a role in glucose and lipid metabolism in T2DM.
BackgroundTriglycerides (TG) to high-density lipoprotein cholesterol (HDL-C) ratio (TG/HDL-C) has been recommended as a surrogate marker for insulin resistance. In the present study, we aimed to investigate the relationship between TG/HDL-C and NAFLD in an apparently healthy population.MethodsA total of 18,061 subjects who participated in a health checkup program were included. NAFLD was diagnosed by ultrasonography.ResultsThe prevalence rate of NAFLD was 24.8% in the whole population, and progressively increased across the quartiles of TG/HDL-C (4.9, 14.1, 26.8 and 53.5%, respectively, P < 0.001). After adjustment for confounding factors, TG/HDL-C was independently associated with the risk of NAFLD. Compared with the first quartile of TG/HDL-C (Q1), the odds ratios (95% confidence intervals) for NAFLD in the increasing quartiles (Q2-Q4) were 2.1(1.8–2.6), 3.6 (3.0–4.3) and 9.2(7.6–11.1), respectively. In addition, the area under receiver operator characteristic curve (95% confidence interval) of TG/HDL-C for NAFLD was 0.85 (0.84–0.86) in women and 0.79 (0.78–0.80) in men, significantly higher than that of TG, TC, LDL-C, HDL-C, ALT and AST (P < 0.05). The optimal cutoff point of TG/HDL-C for detection of NAFLD was 0.9 in women (sensitivity = 78.8%, specificity = 77.3%) and 1.4 in men (sensitivity = 70.7%, specificity = 73.5%).ConclusionsTG/HDL-C is independently associated with NAFLD in apparently healthy individuals and may be used as a surrogate for NAFLD.
Obesity is associated with a state of chronic low-grade inflammation, which contributes to insulin resistance and type 2 diabetes. However, the molecular mechanisms that link obesity to inflammation are not fully understood. Follistatin-like 1 (FSTL1) is a novel proinflammatory cytokine that is expressed in adipose tissue and secreted by preadipocytes/adipocytes. We aimed to test whether FSTL1 could have a role in obesity-induced inflammation and insulin resistance. It was found that FSTL1 expression was markedly decreased during differentiation of 3T3-L1 preadipocytes but reinduced by TNF-α. Furthermore, a significant increase in FSTL1 levels was observed in adipose tissue of obese ob/ob mice, as well as in serum of overweight/obese subjects. Mechanistic studies revealed that FSTL1 induced inflammatory responses in both 3T3-L1 adipocytes and RAW264.7 macrophages. The expression of proinflammatory mediators including IL-6, TNF-α, and MCP-1 was upregulated by recombinant FSTL1 in a dose-dependent manner, paralleled with activation of the IKKβ-NFκB and JNK signaling pathways in the two cell lines. Moreover, FSTL1 impaired insulin signaling in 3T3-L1 adipocytes, as revealed by attenuated phosphorylation of both Akt and IRS-1 in response to insulin stimulation. Together, our results suggest that FSTL1 is a potential mediator of inflammation and insulin resistance in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.