Episodically to continuously active slow-moving landslides are driven by precipitation.Climate change, which is altering both the frequency and magnitude of precipitation worldwide, is therefore predicted to have a major impact on landslides. Here we examine the behavior of hundreds of slow-moving landslides in northern California in response to large changes in annual precipitation that occurred between 2016 and 2018. We quantify the landslide displacement using repeat-pass radar interferometry and pixel offset tracking techniques on a novel data set from the airborne NASA/JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar. We found that 312 landslides were moving due to extreme rainfall during 2017, compared to 119 during 2016, which was the final year of a historic multiyear drought. However, with a return to below to average rainfall in 2018, only 146 landslides remained in motion. The increased number of landslides during 2017 was primarily accommodated by landslides that were smaller than the landslides that remained active between 2016 and 2018. Furthermore, by examining a subset of 51 landslides, we found that 49 had increased velocities during 2017 when compared to 2016. Our results show that slow-moving landslides are sensitive to large changes in annual precipitation, particularly the smaller and thinner landslides that likely experience larger basal pore-water pressure changes. Based on climate model predictions for the next century in California, which include increases in average annual precipitation and increases in the frequency of dry-to-wet extremes, we hypothesize that there will be an overall increase in landslide activity.