Abstract:In order to quantitatively determine the projected electron densities of a sample, one needs to extract the monochromatic fringe phase shifts from the polychromatic fringe phase shifts measured in the grating interferometry with incoherent X-ray sources. In this work the authors propose a novel analytic approach that allows to directly compute the monochromatic fringe shifts from the polychromatic fringe shifts. This approach is validated with numerical simulations of several grating interferometry setups. This work provides a useful tool in quantitative imaging for biomedical and material science applications. T. Den, "Two-dimensional grating-based x-ray phase-contrast imaging using fourier transform phase retrieval," Opt. Express 19, 3339-3346 (2011). 14. J. Rizzi, P. Mercere, M. Idir, P. D. Silva, G. Vincent, and J. Primot, "X-ray phase contrast imaging and noise evaluation using a single phase grating interferometer," Opt. Express 21, 17340-17351 (2013). 15. A. Bravin, P. Coan, and P. Suortti, "X-ray phase-contrast imaging: from pre-clinical applications towards clinics,"Physics in Medicine and Biology 58, R1-R35 (2013). 16. N. Morimoto, S. Fujino, K. Ohshima, J. Harada, T. Hosoi, H. Watanabe, and T. Shimura, "X-ray phase contrast imaging by compact talbot-lau interferometer with a single transmission grating," Opt. Lett. 39, 4297-4300 (2014). 17. N. Morimoto, S. Fujino, A. Yamazaki, Y. Ito, T. Hosoi, H. Watanabe, and T. Shimura, "Two dimensional x-ray phase imaging using single grating interferometer with embedded x-ray targets," Opt. Express 23, 16582-16588 (2015).