Wildland fire can cause significant damage but is also a natural process that is key to the healthy functioning of many ecosystems worldwide. Primary fuels for a wildland fire are the dead foliage and small branches which accumulate as litter on the ground. A cone calorimeter was used to measure the various aspects of these fuels. A single sample of preignition gases from the live leaves of seven plant species were vacuum collected on quality filters and within super-chilled solvent mixtures. GC-TOFMS (1D) and GCxGC-TOFMS (2D) were used to characterize the “white” smoke emissions. The vegetation chemicals were separated into 4 categories: hydrocarbons (CH), oxygenated organics (CHO), unknown peaks (UNK), and organic non-metals (ONM). The multivariate paired Hotelling T2 test determined that the composition of the white smoke as described by the relative number of peaks in the four chemical groups differed significantly between 1D and 2D (Prob > F3,4 = 0.00004). In contrast, the relative peak area percentages in the four chemical groups did not differ between 1D and 2D (Prob > F3,4 = 0.1258). The Molecular Chemical Maps (MCMs) were used to identify chemical trends between the known and unknown chemicals in live oak and longleaf pine. Application of the 2D technique may provide more detailed information necessary to improve the numerical modeling of wildland fire behavior and emissions production.