The resistance of poly(ethylene glycol) (PEG) against protein adsorption is crucial and has been widely utilized in various biomedical applications. In this work, the complete protein composition of biofilms deposited on PEG-based surfaces from human blood plasma (BP) was identified for the first time using nanoLC-MS/MS, a powerful tool in protein analysis. The mass of deposited BP and the number of different proteins contained in the deposits on individual surfaces decreased in the order of self-assembling monolayers of oligo(ethylene glycol) alkanethiolates (SAM) > poly(ethylene glycol) end-grafted onto a SAM > poly(oligo(ethylene glycol) methacrylate) brushes prepared by surface initiated polymerization (poly(OEGMA)). The BP deposit on the poly(OEGMA) surface was composed only of apolipoprotein A-I, apolipoprotein B-100, complement C3, complement C4-A, complement C4-B, histidine-rich glycoprotein, Ig mu chain C region, fibrinogen (Fbg), and serum albumin (HSA). The total resistance of the surface to the Fbg and HSA adsorption from single protein solutions suggested that their deposition from BP was mediated by some of the other proteins. Current theories of protein resistance are not sufficient to explain the observed plasma fouling. The research focused on the identified proteins, and the experimental approach used in this work can provide the basis for the understanding and rational design of plasma-resistant surfaces.
A rapid HPLC-diode array detection (DAD) method was developed for the routine analysis of 16 anthocyanins in wine. Direct injection of filtered wine samples followed by selective detection at 520 nm allowed quantitation of these compounds in red wines. The method was linear for malvidin-3-glucoside over the range 5-250ppm, and the limit of detection for this compound was 0.18 ppm. A volatile mobile phase is used, which enables hyphenation to mass spectrometry (MS). With HPLC-MS, a total of 44 pigments could be identified in South African wines. Obtained mass spectra are discussed for a series of representative wine constituents and results are compared with literature references. An attempt was made to differentiate between different cultivars according to the anthocyanin content using stepwise forward linear discriminant analysis (LDA).
A simple method for the analysis of major wine volatiles and semivolatiles by stir bar sorptive extraction in combination with thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS) was developed. Significant experimental parameters such as extraction time, temperature, salt addition, pH, and thermal desorption parameters were optimized to provide a sensitive and robust analytical method. The method provided good repeatability (%RSD < 10%) for 38 major wine volatile compounds, including alcohols, acids, esters, phenols, aldehydes, ketones, and lactones. Quantitative data for 62 South African red and white wines were used to study the suitability of major volatile data for the differentiation of wine samples according to grape variety or cultivar. Principal component analysis (PCA) and cluster analysis (CA) showed that most of the variation in volatile composition between wine samples could be ascribed to differences in wine age, wood contact, and fermentation practices. Despite the contribution of these factors, discriminant analysis (DA) was successfully applied to the classification of red and white wine samples according to cultivar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.