In this review paper, the definition of the tissue engineering (TE) was comprehensively explored towards scaffold fabrication techniques and applications. Scaffold properties and features in TE, biological aspects, scaffold material composition, scaffold structural requirements, and old and current manufacturing technologies were reported and discussed. In almost all the reviewed reports, the TE definition denotes renewal, development, and repairs of damaged tissues caused by various factors such as disease, injury, or congenital disabilities. TE is multidisciplinary that combines biology, biochemistry, clinical medicine, and materials science whose application in cellular systems such as organ transplantation serves as a delivery vehicle for cells and drug. According to the previous literature and this review, the scaffold fabrication techniques can be classified into two main categories: conventional and modern techniques. These TE fabrication techniques are applied in the scaffold building which later on are used in tissue and organ structure. The benefits and drawbacks of each of the fabrication techniques have been described in conjunction with current areas of research devoted to deal with some of the challenges. To figure out, the highlighted aspects aimed to define the advancements and challenges that should be addressed in the scaffold design for tissue engineering. Additionally, this study provides an excellent review of original numerical approaches focused on mechanical characteristics that can be helpful in the scaffold design assessment in the analysis of scaffold parameters in tissue engineering.