The major lipid constituent of symbiotic gram-positive bacteria in animals are phosphatidylglycerol, cardiolipin and dihexaosyl diglycerides (DH-DG), whose hydrophobic structures are characteristic of the environments, and the carbohydrate structures of DH-DGs are bacterial species-characteristic. Immunization of rabbits with intestinal lactobacilli generated antibodies against DH-DGs and their modified structures, among which Galα1-6-substituted DH-DG, i.e., Lactobacillus tetrahexaosyl diglyceride (LacTetH-DG), reacted with antibodies more intensely than DH-DG. Whereas, from the 16S-rRNA sequence, the intestinal lactobacilli in murine digestive tracts were revealed to be L. johnsonii, in which LacTetH-DG is present at the concentration of 2.2 ng per 1 × 10(6) cells. To obtain more accurate estimates of intestinal lactobacilli in several regions of the digestive tract of mice, LacTetH-DG was detected by TLC-immunostaining with anti-Lactobacillus antisera, being found in the stomach, cecum and colon of normal breeding mice, 1.0 × 10(9), 3.5 × 10(9) and 7.4 × 10(9) cells, respectively. Administration of penicillin and streptomycin for 6 days resulted in a reduction in the number of intestinal lactobacilli, the levels being 0 %, 30 % and 4 % of the control ones in the stomach, cecum and colon, respectively, which was associated with the accumulation of the contents in the tracts from the stomach to the cecum and with diarrhea. In addition, a reduced amount of fucosyl GA1 (FGA1) and a compensatory increase in GA1 due to the reduced activity of α1,2-fucosyltransferase in the small intestine and the enhanced discharge of FGA1 into the contents occurred in mice, probably due to the altered population of bacteria caused by administration of penicillin and streptomycin.