ABCG5 (G5) and ABCG8 (G8) are ATP-binding cassette half-transporters that limit intestinal uptake and promote biliary secretion of neutral sterols. Here, we describe the purification of endogenous G5G8 from mouse liver to near homogeneity. We incorporated the native proteins into membrane vesicles and reconstituted sterol transfer. Native gel electrophoresis, density-gradient ultracentrifugation, and chemical cross-linking studies indicated that the functional native complex is a heterodimer. No higher order oligomeric forms were observed at any stage in the catalytic cycle. Sterol transfer activity by purified native G5G8 was stable, stereospecific, and selective. We also report that G5 but not G8 is S-palmitoylated and that palmitoylation is not essential for dimerization, trafficking, or biliary sterol secretion. Both G5 and G8 have short but highly conserved cytoplasmic tails. The functional roles of these C-terminal regions were examined using an in vivo functional assay. ABCG5 (G5) 1 and ABCG8 (G8) are ABC half-transporters that limit the accumulation of neutral sterols in the body (1). The two proteins are expressed primarily in enterocytes and hepatocytes, where they heterodimerize in the endoplasmic reticulum prior to being transported to apical membranes (1-3). Inactivating mutations in either G5 or G8 cause sitosterolemia, a recessive disorder characterized by hypercholesterolemia, phytosterolemia, and premature coronary artery disease (3,4). The role of G5 and G8 in sterol trafficking in vivo has been † This work was supported by Grant HL72304 from the National Institutes of Health (NIH).
NIH Public Access
Author ManuscriptBiochemistry. Author manuscript; available in PMC 2009 July 8.
Published in final edited form as:Biochemistry.
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript examined in detail using genetically modified mice, in which G5 and G8 are either overexpressed or inactivated (5-10). In the intestine, the G5G8 heterodimer limits the absorption of dietary sterols, especially plant-derived sterols (5). G5G8 synthesized in the liver is located in the bile canalicular membrane and is required for efficient secretion of neutral sterols into bile (5).Previously, we developed an in vitro assay using recombinant G5G8 expressed in Sf9 cells to elucidate the mechanism by which G5G8 promotes translocation of sterols across membranes (11). Membrane vesicles prepared from Sf9 cells expressing wild-type G5 and G8 supported the transfer of cholesterol from donor vesicles. G5G8-mediated transfer was stereoselective and specific for neutral sterols. Introduction of mutations predicted to disrupt ATP hydrolysis abolished G5G8-mediated sterol transfer. The recombinant G5G8 transporter was purified to near homogeneity using affinity chromatography, and the purified heterodimer retained ATPdependent sterol transfer activity when incorporated into proteoliposomes (11). These studies provided the first direct evidence that neutral sterols are the primary transport substrate f...