Interleukin-12 family cytokines have emerged as critical regulators of immunity with some members (IL-12, IL-23) associated with disease pathogenesis while others (IL-27sue injury by promoting the expansion of regulatory B and T-cell subsets [2,3].Discovery of IL-23 in 2000 [4] led to the reevaluation of IL-12 and IL-23 in autoimmune diseases. For example, therapeutic targeting of IL-12p40 decreases pathology in many mouse models of autoimmune diseases [5], while disease is exacerbated in IL-12p35-deficient mice [6,7]. Thus, IL-23 rather than IL-12 was * These authors contributed equally to this work as first authors.* * These authors contributed equally to this work as senior authors. Eur. J. Immunol. 2016. 46: 1343-1350 found to be the critical cytokine for autoimmune inflammation including experimental immune-mediated disease [6][7][8][9][10]. Currently, at least ten therapeutic agents targeting IL-23 are being tested in the clinic for more than 17 human immune-mediated diseases [11]. Both IL-27 and IL-35 have immune-suppressive activities and are also cytokines with strikingly diverse influences on the immune response so that viable therapeutic targets may also be exploited for treatment of human inflammatory diseases [12,13]. Thus, understanding immunobiology of IL-12 family cytokines would undoubtedly provide valuable knowledge that can be exploited therapeutically. The IL-12 family cytokines are α/β heterodimers consisting of one α subunit (IL-23p19, IL-27p28, IL-12p35) and one β chain (IL-12p40, Ebi3) [14,15]. Although there are currently four known members in the family, the predictable range of combinations is six and it is conceivable that additional pairings such as IL-23p19/Ebi3 are possible [12,[14][15][16][17]. In this study, we sought to discover additional IL-12 members that might exist in nature. By combining different alpha and beta IL-12 subunit proteins in vitro we detected a novel stable p19/Ebi3 heterodimeric complex by immunoprecipitation. We have characterized the p19/Ebi3 cytokine (IL-39) and demonstrated that it possesses biological activities in vitro and in vivo. Results IL-23p19 (p19) and Ebi3 form a composite factor (IL-39)To examine whether p19 can form a stable complex with Ebi3, we mixed equal amounts of the two proteins and immunoprecipitation (IP)/Western blot analyses revealed formation of a stable human p19/Ebi3 complex (Fig. 1A). We could not detect the p19/Ebi3 following IP with isotype IgG or anti-c-Jun antibody, providing suggestive evidence for potential bona fide p19/Ebi3 cytokine. To confirm our finding in another animal species, we genetically engineered and expressed mouse p19 and Ebi3 subunits in CHO cells (Fig. 1B). IP of supernatants derived from transfectants with anti-p19 mAb and followed by Western blot analysis using anti-Ebi3 mAb confirmed coexpression p19 and Ebi3 and formation of a stable p19/Ebi3 heterodimer (Fig. 1C). We further confirmed this observation by reciprocal IP with anti-Ebi3 mAb and Western blotting with anti-p19 mAb and the p19/Ebi3 comple...
NLRP3 inflammasome activation plays an important role in diabetic cardiomyopathy (DCM), which may relate to excessive production of reactive oxygen species (ROS). Gypenosides (Gps), the major ingredients of Gynostemma pentaphylla (Thunb.) Makino, have exerted the properties of anti‐hyperglycaemia and anti‐inflammation, but whether Gps improve myocardial damage and the mechanism remains unclear. Here, we found that high glucose (HG) induced myocardial damage by activating the NLRP3 inflammasome and then promoting IL‐1β and IL‐18 secretion in H9C2 cells and NRVMs. Meanwhile, HG elevated the production of ROS, which was vital to NLRP3 inflammasome activation. Moreover, the ROS activated the NLRP3 inflammasome mainly by cytochrome c influx into the cytoplasm and binding to NLRP3. Inhibition of ROS and cytochrome c dramatically down‐regulated NLRP3 inflammasome activation and improved the cardiomyocyte damage induced by HG, which was also detected in cells treated by Gps. Furthermore, Gps also reduced the levels of the C‐reactive proteins (CRPs), IL‐1β and IL‐18, inhibited NLRP3 inflammasome activation and consequently improved myocardial damage in vivo. These findings provide a mechanism that ROS induced by HG activates the NLRP3 inflammasome by cytochrome c binding to NLRP3 and that Gps may be potential and effective drugs for DCM via the inhibition of ROS‐mediated NLRP3 inflammasome activation.
We have previously demonstrated that exosomes from dendritic cells (DCs) secreting TGF-β1 (sTGF-β1-EXOs) delay the development of murine inflammatory bowel disease (IBD). In this study, we isolated exosomes from DCs expressing membrane-associated TGF-β1 (mTGF-β1-EXOs) and found mTGF-β1-EXOs had more potent immunosuppressive activity than sTGF-β1-EXOs in vitro. Treatment of mice with mTGF-β1-EXOs inhibited the development and progression of myelin oligodendrocyte glycoprotein (MOG)peptide-induced EAE even after disease onset. Treatment of mice with mTGF-β1-EXOs also impaired Ag-specific Th1 and IL-17 responses, but promoted IL-10 responses ex vivo. Treatment with mTGF-β1-EXOs decreased the frequency of Th17 cells in EAE mice, which might be associated with the down-regulation of the p38, ERK, Stat3, and NF-κB activation and IL-6 expression in DCs. Treatment with mTGF-β1-EXOs maintained the regulatory capacity of Treg cells, and adoptive transfer of CD4 + Foxp3 + Treg cells from mTGF-β1-EXO-treated EAE mice dramatically prevented the development of EAE in the recipients. Moreover, treatment with mTGF-β1-EXOs from C57BL/6 mice effectively prevented and inhibited proteolipid protein (PLP) peptide-induced EAE in BALB/c mice. These results indicate that mTGF-β1-EXOs possess powerful immunosuppressive ability and can effectively inhibit the development and progression of EAE in different strains of mice.Keywords: Autoimmune diseases r Exosomes r TGF-β1 r Th17 r Treg cells IntroductionDCs are unique professional APCs and important for the initiation and regulation of immune response [1,2]. Immature DCs have lower levels of co-stimulatory molecules and usually Correspondence: Dr. Zhijian Cai e-mail: caizj@zju.edu.cn; jlwang@zju.edu.cn induce Ag-specific T-cell anergy [3]. TGF-β1 is a negative regulator of pro-inflammatory immune responses. We previously found that systemic administration of TGF-β1 gene-modified immature DCs delayed the development of dextran sulfate sodiuminduced murine inflammatory bowel disease (IBD) [4]. Therefore, * These authors contributed equally to this work. * * These authors share senior co-authorship.C 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu 2462 Lei Yu et al. Eur. J. Immunol. 2013. 43: 2461-2472 TGF-β1 may modify DC development toward a regulatory phenotype, inhibiting inflammation. Exosomes, released by almost all types of cells, are small lipid bilayer vesicles with a size of 50-100 nm. They are formed by membrane budding into the lumen of an endocytic compartment, leading to the formation of multivesicular bodies. Fusion of multivesicular bodies to plasma membrane leads to the extracellular release of exosomes [5,6]. Exosomes from DCs transfected with vIL-10, FasL, or IL-4 gene inhibit delayed-type hypersensitivity and collagen-induced murine arthritis [7,8]. These results indicate that exosomes can be effective vehicles to carry immunoregulatory molecules for the treatment of autoimmune diseases.Ag-specific Th1 and Th17 cells are crucial for the development of...
1,25‐dihydroxyvitamin D3 (1,25(OH)2D3, VitD3) is the major active ingredient of vitamin D and has anti‐inflammatory activity; however, the mechanism for this remains poorly understood. In this study, we found that VitD3 was able to abolish NOD‐like receptor protein 3 (NLRP3) inflammasome activation and subsequently inhibit caspase‐1 activation and IL‐1β secretion via the vitamin D receptor (VDR). Furthermore, VitD3 specifically prevented NLRP3‐mediated apoptosis‐associated speck‐like protein with a caspase‐recruitment domain (ASC) oligomerization. In additional to this, NLRP3 binding to NIMA‐related kinase 7 (NEK7) was also inhibited. Notably, VitD3 inhibited autophagy, leading to the inhibition of the NLRP3 inflammasome. Uncoupling protein 2‐reactive oxygen species signaling may be involved in inflammasome suppression by VitD3. Importantly, VitD3 had both preventive and therapeutic effects on mouse model of ulcerative colitis, via inhibition of NLRP3 inflammasome activation. Our results reveal a mechanism through which VitD3 represses inflammation and prevents the relevant diseases, and suggest a potential clinical use of VitD3 in autoimmune syndromes or other NLRP3 inflammasome‐driven inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.