Myogenin is a member of the basic helix-loop-helix (bHLH) gene family and converts multipotential mesodermal cells to myoblasts. The four members of the myoD family show unique spatio-temporal expression patterns and therefore may have different functions during myogenesis. Here we inactivate the myogenin gene in order to understand its role in myogenesis. Homozygous mutations are lethal perinatally owing to the resulting major defects in skeletal muscle. The extent of disorganization of muscle tissue differs in three regions. In the latero-ventral body wall, most cells, including myogenic cells, disappear and there is rapid accretion of fluid. In the limbs, cells of the myogenic lineage exist, but they are severely disrupted, and some of them are mono-nucleate with properties of myoblasts. In contrast, there are many axial, intercostal and back muscle fibres to be seen, although fibres are mainly disorganized and Z-lines are not present in most myofibrils. These findings are evidence that myogenin is crucial for muscle development in utero and demonstrate that other members of the myogenic gene family cannot compensate for the defect.
Nuclear orphan receptor Nur77 has important roles in many biological processes. However, a physiological ligand for Nur77 has not been identified. Here, we report that the octaketide cytosporone B (Csn-B) is a naturally occurring agonist for Nur77. Csn-B specifically binds to the ligand-binding domain of Nur77 and stimulates Nur77-dependent transactivational activity towards target genes including Nr4a1 (Nur77) itself, which contains multiple consensus response elements allowing positive autoregulation in a Csn-B-dependent manner. Csn-B also elevates blood glucose levels in fasting C57 mice, an effect that is accompanied by induction of multiple genes involved in gluconeogenesis. These biological effects were not observed in Nur77-null (Nr4a1-/-) mice, which indicates that Csn-B regulates gluconeogenesis through Nur77. Moreover, Csn-B induced apoptosis and retarded xenograft tumor growth by inducing Nur77 expression, translocating Nur77 to mitochondria to cause cytochrome c release. Thus, Csn-B may represent a promising therapeutic drug for cancers and hypoglycemia, and it may also be useful as a reagent to increase understanding of Nur77 biological function.
We report here that overexpression of the tuberous sclerosis-1 (TSC1) gene product hamartin results in the inhibition of growth, as well as changes in cell morphology. Growth inhibition was associated with an increase in the endogenous level of the product of the tuberous sclerosis-2 (TSC2) gene, tuberin. As overexpression of tuberin inhibits cell growth, and hamartin is known to bind tuberin, these results suggested that hamartin stabilizes tuberin and this contributes to the inhibition of cell growth. Indeed, transient transfection of TSC1 increased the endogenous level of tuberin, and transient co-transfection of TSC1 with TSC2 resulted in higher tuberin levels. The stabilization was explained by the ®nding that tuberin is highly ubiquitinated in cells, while the fraction of tuberin that is bound to hamartin is not ubiquitinated. Co-expression of tuberin stabilized hamartin, which is weakly ubiquitinated, in transiently transfected cells. The amino-terminal two-thirds of tuberin was responsible for its ubiquitination and for stabilization of hamartin. A mutant of tuberin from a patient missense mutation of TSC2 was also highly ubiquitinated, and was unable to stabilize hamartin. We conclude that hamartin is a growth inhibitory protein whose biological e ect is likely dependent on its interaction with tuberin. Oncogene (2000) 19, 6306 ± 6316.
Chemotherapy is the preferred treatment for advanced stage gastric cancer (GC) patients and chemotherapy resistance is the major obstacle to effective cancer therapy. Increasing evidence suggests that mesenchymal stem cells (MSCs) make important contributions to development of drug resistance. However, the underlying mechanism remains elusive. In this study, we discovered that abundant MSCs in tumor tissues predicted a poor prognosis in GC patients. MSCs promoted stemness and chemoresistance in GC cells through fatty acid oxidation (FAO) in vitro and in vivo. Mechanically, transforming growth factor β1 (TGF-β1) secretion by MSCs activated SMAD2/3 through TGF-β receptors and induced long non-coding RNA (lncRNA) MACC1-AS1 expression in GC cells, which promoted FAO-dependent stemness and chemoresistance through antagonizing miR-145-5p. Moreover, pharmacologic inhibition of FAO with etomoxir (ETX) attenuated MSC-induced FOLFOX regiment resistance in vivo. These results suggest that FAO plays an important role in MSC-mediated stemness and chemotherapy resistance in GC and FAO inhibitors in combination with chemotherapeutic drugs present as a promising strategy to overcome chemoresistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.