Nuclear orphan receptor Nur77 has important roles in many biological processes. However, a physiological ligand for Nur77 has not been identified. Here, we report that the octaketide cytosporone B (Csn-B) is a naturally occurring agonist for Nur77. Csn-B specifically binds to the ligand-binding domain of Nur77 and stimulates Nur77-dependent transactivational activity towards target genes including Nr4a1 (Nur77) itself, which contains multiple consensus response elements allowing positive autoregulation in a Csn-B-dependent manner. Csn-B also elevates blood glucose levels in fasting C57 mice, an effect that is accompanied by induction of multiple genes involved in gluconeogenesis. These biological effects were not observed in Nur77-null (Nr4a1-/-) mice, which indicates that Csn-B regulates gluconeogenesis through Nur77. Moreover, Csn-B induced apoptosis and retarded xenograft tumor growth by inducing Nur77 expression, translocating Nur77 to mitochondria to cause cytochrome c release. Thus, Csn-B may represent a promising therapeutic drug for cancers and hypoglycemia, and it may also be useful as a reagent to increase understanding of Nur77 biological function.
Liver kinase B1 (LKB1) has important roles in governing energy homeostasis by regulating the activity of the energy sensor kinase AMP-activated protein kinase (AMPK). The regulation of LKB1 function, however, is still poorly understood. Here we demonstrate that the orphan nuclear receptor Nur77 binds and sequesters LKB1 in the nucleus, thereby attenuating AMPK activation. This Nur77 function is antagonized by the chemical compound ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA), which interacts with Nur77 with high affinity and at specific sites. TMPA binding of Nur77 results in the release and shuttling of LKB1 to the cytoplasm to phosphorylate AMPKα. Moreover, TMPA effectively reduces blood glucose and alleviates insulin resistance in type II db/db and high-fat diet- and streptozotocin-induced diabetic mice but not in diabetic littermates with the Nur77 gene knocked out. This study attains a mechanistic understanding of the regulation of LKB1-AMPK axis and implicates Nur77 as a new and amenable target for the design and development of therapeutics to treat metabolic diseases.
Berberine, an isoquinoline alkaloid, is a traditional oriental medicine used to treat diarrhea and gastroenteritis. Recently, we reported that it could inhibit the growth of intestinal polyp in animals and in patients with the familial adenomatous polyposis by downregulating β-catenin signaling. However, the intracellular target mediating the effects of berberine remains elusive. Here, we provide evidence that berberine inhibits β-catenin function via directly binding to a unique region comprising residues Gln275, Arg316 and Arg371 in nuclear receptor retinoid X receptor alpha (RXRα), where berberine concomitantly binding to and synergistically activating RXRα with 9-cis-retinoic acid (9-cis-RA), a natural ligand binding to the classical ligand-binding pocket of RXRα. Berberine binding promotes RXRα interaction with nuclear β-catenin, leading to c-Cbl mediated degradation of β-catenin, and consequently inhibits the proliferation of colon cancer cells. Furthermore, berberine suppresses the growth of human colon carcinoma xenograft in nude mice in an RXRα-dependent manner. Together, our study not only identifies RXRα as a direct protein target for berberine but also dissects their binding mode and validates that berberine indeed suppresses β-catenin signaling and cell growth in colon cancer via binding RXRα, which provide new strategies for the design of new RXRα-based antitumor agents and drug combinations.
Nur77 is a steroid orphan receptor that plays a critical role in regulating proliferation, differentiation, and apoptosis, including acting as a switch for Bcl-2 function. We previously reported that the octaketide cytosporone B (Csn-B) is a natural agonist for Nur77. In this study, we synthesized a series of Csn-B analogues and performed a structure-activity analysis that suggested criteria for the development of a unique pharmacophore to activate Nur77. The components of the pharmacophore necessary for binding Nur77 included the benzene ring, the phenolic hydroxyl group, and the acyl chain of the Csn-B scaffold, whereas the key feature for activating the biological function of Nur77 was the ester group. Csn-B analogues that bound Nur77 tightly not only stimulated its transactivation activity but also initiated mitochondrial apoptosis by means of novel crosstalk between Nur77 and BRE, an antiapoptotic protein regulated at the transcriptional level. Notably, the derivative n-amyl 2-[3,5-dihydroxy-2-(1-nonanoyl)phenyl]acetate exhibited greater antitumor activity in vivo than its parent compounds, highlighting particular interest in this compound. Our findings describe a pathway for rational design of Csn-B-derived Nur77 agonists as a new class of potent and effective antitumor agents.Cancer Res; 70(9); 3628-37. ©2010 AACR.
MDM2 is an oncoprotein whose transforming potential is activated by overexpression. The expression level of MDM2 is negatively regulated by orphan receptor TR3 that mainly acts as a transcriptional factor to regulate gene expression. However, the underlying mechanism is largely unclear. Here, we present the first evidence that inhibition of TR3 on MDM2 is mediated by p53. We found that TR3 directly interacts with p53 but not MDM2, and such interaction is critical for TR3 to inhibit MDM2 expression. TR3 downregulates p53 transcriptional activity by blocking its acetylation, leading to a decrease on the transcription level of MDM2. Furthermore, TR3 binding to p53 obstructs its ubiquitination and degradation induced by MDM2, resulting in the MDM2 ubiquitination and degradation. In addition, TR3 could enhance p53-mediated apoptosis induced by UV irradiation. Taken together, our findings demonstrate that p53 mediates the suppression of TR3 on MDM2 at both transcriptional and post-transcriptional level and suggest TR3 as a potential target to develop new anticancer agents that restrict MDM2-induced tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.