Wild relatives of crops are an important source of genetic diversity for agriculture, but their gene repertoire remains largely unexplored. We report the establishment and analysis of a pan-genome of Glycine soja, the wild relative of cultivated soybean Glycine max, by sequencing and de novo assembly of seven phylogenetically and geographically representative accessions. Intergenomic comparisons identified lineage-specific genes and genes with copy number variation or large-effect mutations, some of which show evidence of positive selection and may contribute to variation of agronomic traits such as biotic resistance, seed composition, flowering and maturity time, organ size and final biomass. Approximately 80% of the pan-genome was present in all seven accessions (core), whereas the rest was dispensable and exhibited greater variation than the core genome, perhaps reflecting a role in adaptation to diverse environments. This work will facilitate the harnessing of untapped genetic diversity from wild soybean for enhancement of elite cultivars.
Enhancer RNA (eRNA) is a type of noncoding RNA transcribed from the enhancer. Although critical roles of eRNA in gene transcription control have been increasingly realized, the systemic landscape and potential function of eRNAs in cancer remains largely unexplored. Here, we report the integration of multi-omics and pharmacogenomics data across large-scale patient samples and cancer cell lines. We observe a cancer-/lineage-specificity of eRNAs, which may be largely driven by tissue-specific TFs. eRNAs are involved in multiple cancer signaling pathways through putatively regulating their target genes, including clinically actionable genes and immune checkpoints. They may also affect drug response by within-pathway or cross-pathway means. We characterize the oncogenic potential and therapeutic liability of one eRNA, NET1e, supporting the clinical feasibility of eRNA-targeted therapy. We identify a panel of clinically relevant eRNAs and developed a user-friendly data portal. Our study reveals the transcriptional landscape and clinical utility of eRNAs in cancer.
Colobines are a unique group of Old World monkeys that principally eat leaves and seeds rather than fruits and insects. We report the sequencing at 146× coverage, de novo assembly and analyses of the genome of a male golden snub-nosed monkey (Rhinopithecus roxellana) and resequencing at 30× coverage of three related species (Rhinopithecus bieti, Rhinopithecus brelichi and Rhinopithecus strykeri). Comparative analyses showed that Asian colobines have an enhanced ability to derive energy from fatty acids and to degrade xenobiotics. We found evidence for functional evolution in the colobine RNASE1 gene, encoding a key secretory RNase that digests the high concentrations of bacterial RNA derived from symbiotic microflora. Demographic reconstructions indicated that the profile of ancient effective population sizes for R. roxellana more closely resembles that of giant panda rather than its congeners. These findings offer new insights into the dietary adaptations and evolutionary history of colobine primates.Knowledge of the patterns and processes underlying the evolution of alternative dietary strategies in nonhuman primates is critical to understanding hominin evolution, nutritional ecology and applications in biomedicine 1 . Colobines, a group of Old World monkeys, serve as an important model organism for studying the evolution of the primate diet because of their adaptation to folivory: they primarily eat leaves and seeds rather than fruits and insects as their major food source. In their specialized and compartmentalized stomachs, colobines allow symbiotic bacteria in the foregut to ferment structural carbohydrates and then recover nutrients by digesting the bacteria 2 . This strategy is similar to that used by other foregut fermenters found in an evolutionarily distantly related group of mammals (for example, artiodactyls). Although a number of primate genomes have been sequenced thus far, high-quality genome sequence information is absent for Asian and African colobines, a key group for elucidating the evolution and adaptation of primates as a whole. Snub-nosed monkeys (Rhinopithecus species) are a group of endangered colobines, which were once widely distributed in Asia but are now limited to mountain forests in China and Vietnam 3 (Supplementary Fig. 1).The golden snub-nosed monkey (GSM, R. roxellana) is recognized as an iconic endangered species in China for its golden coat, blue facial coloration, snub nose and specialized life history. Among its congeners, the black-white snub-nosed monkey (R. bieti), endemic to the Tibetan plateau, has the highest altitudinal distribution (>4,000 m above sea level) of any nonhuman primate. Given the above features and the fact that Rhinopithecus species consume difficult-to-digest foods that contain tannins (for example, leaves and pine seeds), we expected to identify genetic adaptations that enhance the breakdown of toxins, improve the regulation of energy metabolism and facilitate the digestion of symbiotic microbacteria. RESULTS Genomic sequences and the accumulation of...
Tumor hypoxia is a major contributor to resistance to anti-cancer therapies. Given that the results of hypoxia-targeted therapy trials have been disappointing, a more personalized approach may be needed. Here we characterize multi-OMIC molecular features associated with tumor hypoxia and identify molecular alterations that correlate with both drug-resistant and drug-sensitive responses to anti-cancer drugs. Based on a well-established hypoxia gene expression signature, we classify about 10,000 tumor samples into hypoxia score-high and score-low groups across different cancer types from The Cancer Genome Atlas and demonstrate their prognostic associations. We then identify various types of molecular features associated with hypoxia status that correlate with drug resistance but, in some cases, also with drug sensitivity, contrasting the conventional view that hypoxia confers drug resistance. We further show that 110 out of 121 (90.9%) clinically actionable genes can be affected by hypoxia status and experimentally validate the predicted effects of hypoxia on the response to several drugs in cultured cells. Our study provides a comprehensive molecular-level understanding of tumor hypoxia and may have practical implications for clinical cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.