Enhancer RNA (eRNA) is a type of noncoding RNA transcribed from the enhancer. Although critical roles of eRNA in gene transcription control have been increasingly realized, the systemic landscape and potential function of eRNAs in cancer remains largely unexplored. Here, we report the integration of multi-omics and pharmacogenomics data across large-scale patient samples and cancer cell lines. We observe a cancer-/lineage-specificity of eRNAs, which may be largely driven by tissue-specific TFs. eRNAs are involved in multiple cancer signaling pathways through putatively regulating their target genes, including clinically actionable genes and immune checkpoints. They may also affect drug response by within-pathway or cross-pathway means. We characterize the oncogenic potential and therapeutic liability of one eRNA, NET1e, supporting the clinical feasibility of eRNA-targeted therapy. We identify a panel of clinically relevant eRNAs and developed a user-friendly data portal. Our study reveals the transcriptional landscape and clinical utility of eRNAs in cancer.
Increasing evidence has demonstrated that small nucleolar RNAs (snoRNAs) play important roles in tumorigenesis. We systematically investigated the expression landscape and clinical relevance of snoRNAs in >10,000 samples across 31 cancer types from The Cancer Genome Atlas. We observed overall elevated expression of snoRNAs and their ribonucleoproteins in multiple cancer types. We showed complex regulation of snoRNA expression by their host genes, copy number variation, and DNA methylation. Unsupervised clustering revealed that the snoRNA expression subtype is highly concordant with other molecular/clinical subtypes. We further identified 46 clinically relevant snoRNAs and experimentally demonstrated functional roles of SNORD46 in promoting cell proliferation, migration, and invasion. We developed a user-friendly data portal, SNORic, to benefit the research community. Our study highlights the significant roles of snoRNAs in the development and implementation of biomarkers or therapeutic targets for cancer and provides a valuable resource for cancer research.
The protein translational system, including transfer RNAs (tRNAs) and several categories of enzymes, plays a key role in regulating cell proliferation. Translation dysregulation also contributes to cancer development, though relatively little is known about the changes that occur to the translational system in cancer. Here, we present global analyses of tRNAs and three categories of enzymes involved in translational regulation in ~10,000 cancer patients across 31 cancer types from The Cancer Genome Atlas. By analyzing the expression levels of tRNAs at the gene, codon, and amino acid levels, we identified unequal alterations in tRNA expression, likely due to the uneven distribution of tRNAs decoding different codons. We find that overexpression of tRNAs recognizing codons with a low observed-over-expected ratio may overcome the translational bottleneck in tumorigenesis. We further observed overall overexpression and amplification of tRNA modification enzymes, aminoacyl-tRNA synthetases, and translation factors, which may play synergistic roles with overexpression of tRNAs to activate the translational systems across multiple cancer types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.