Terpolymers of L-lactide, D,L-lactide and trimethylene carbonate (TMC) were synthesized via the ring-opening polymerization reaction for cyclic monomers using stannous octoate as the initiator at a ratio of ~0.05 mol% (monomers/(SnOct) 2 ). Synthesis was done at 130 °C for 48 h. The inclusion of TMC, an aliphatic elastomeric polycarbonate, alongside polymer chain segments containing L-lactide and D,L-lactide, was expected to yield a material with improved properties such as increased elongation; this would overcome the limitation of copolymers consisting entirely of lactide and D,L-lactide. The terpolymer properties were assessed by Nuclear magnetic resonance spectroscopy 1 H and 13 C NMR, infrared spectroscopy, differential scanning calorimetry and thermogravimetry, with particular attention being given to the effect of TMC on the copolymer of L-lactide-co-D,L-lactide. The mixing of these polymers resulted in material with a high molar mass (10 5 g/mol). The mechanical properties of the terpolymer were assessed using pins of this material that were tested by mechanical flexion at three points. When compared with results for the copolymer PLDLA there was a decrease in Young's modulus for the TMC-containing terpolymer.