2021
DOI: 10.1007/s00041-021-09895-2
|View full text |Cite
|
Sign up to set email alerts
|

Characterization of Smooth Symbol Classes by Gabor Matrix Decay

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
5
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 39 publications
0
5
0
Order By: Relevance
“…Since μ(χ) −1 = μ(χ −1 ) is in F I O(χ −1 , q, v s ) by Theorem 6.8, the algebra property of Theorem 6.4 (ii) implies that T μ(χ −1 ) ∈ F I O(Id, q, v s ). Now Theorem 3.2 in [2] implies the existence of a symbol σ 1 ∈ M ∞,q 1⊗v s (R 2d ), such that T μ(χ) −1 = Op w (σ 1 ), as claimed. The rest goes exactly as in [9,Theorem 3.8].…”
Section: Theorem 63 Consider T a Continuous Linear Operatormentioning
confidence: 73%
See 2 more Smart Citations
“…Since μ(χ) −1 = μ(χ −1 ) is in F I O(χ −1 , q, v s ) by Theorem 6.8, the algebra property of Theorem 6.4 (ii) implies that T μ(χ −1 ) ∈ F I O(Id, q, v s ). Now Theorem 3.2 in [2] implies the existence of a symbol σ 1 ∈ M ∞,q 1⊗v s (R 2d ), such that T μ(χ) −1 = Op w (σ 1 ), as claimed. The rest goes exactly as in [9,Theorem 3.8].…”
Section: Theorem 63 Consider T a Continuous Linear Operatormentioning
confidence: 73%
“…It follows the same pattern of the proof of [9,Theorem 3.8]. The main tool is the characterization in Theorem 3.2 of [2] which extends Theorem 4.6 in [25] to the case 0 < q < 1. We recall the main steps for the benefit of the reader.…”
Section: Theorem 63 Consider T a Continuous Linear Operatormentioning
confidence: 80%
See 1 more Smart Citation
“…where, if we write w = (y, η), then χ(y, η) = (y + τ η, η). This striking result is due to the peculiar action of W on the phase Φ(x, ξ) = xξ − τ ξ 2 . It generalizes to quadratic Φ(x, ξ), corresponding to quadratic Hamiltonians and linear symplectic map χ in (4), see for example [20].…”
Section: Introductionmentioning
confidence: 99%
“…where z := (1 + |z| 2 ) 1/2 , in the spirit of the estimates for Gabor kernels, which have been widely investigated in the literature, classical references are [2,10,15,16,26,27], see also [18,Chapter 5].…”
Section: Introductionmentioning
confidence: 99%