We consider time-frequency localization operators $$A_a^{\varphi _1,\varphi _2}$$ A a φ 1 , φ 2 with symbols a in the wide weighted modulation space $$ M^\infty _{w}({\mathbb {R}^{2d}})$$ M w ∞ ( R 2 d ) , and windows $$ \varphi _1, \varphi _2 $$ φ 1 , φ 2 in the Gelfand–Shilov space $$\mathcal {S}^{\left( 1\right) }(\mathbb {R}^d)$$ S 1 ( R d ) . If the weights under consideration are of ultra-rapid growth, we prove that the eigenfunctions of $$A_a^{\varphi _1,\varphi _2}$$ A a φ 1 , φ 2 have appropriate subexponential decay in phase space, i.e. that they belong to the Gelfand–Shilov space $$ \mathcal {S}^{(\gamma )} (\mathbb {R^{d}}) $$ S ( γ ) ( R d ) , where the parameter $$\gamma \ge 1 $$ γ ≥ 1 is related to the growth of the considered weight. An important role is played by $$\tau $$ τ -pseudodifferential operators $$Op_{\tau } (\sigma )$$ O p τ ( σ ) . In that direction we show convenient continuity properties of $$Op_{\tau } (\sigma )$$ O p τ ( σ ) when acting on weighted modulation spaces. Furthermore, we prove subexponential decay and regularity properties of the eigenfunctions of $$Op_{\tau } (\sigma )$$ O p τ ( σ ) when the symbol $$\sigma $$ σ belongs to a modulation space with appropriately chosen weight functions. As an auxiliary result we also prove new convolution relations for (quasi-)Banach weighted modulation spaces.
We introduce new quasi-Banach modulation spaces on locally compact abelian (LCA) groups which coincide with the classical ones in the Banach setting and prove their main properties. Then we study Gabor frames on quasilattices, significantly extending the original theory introduced by Gröchenig and Strohmer. These issues are the key tools in showing boundedness results for Kohn-Nirenberg and localization operators on modulation spaces and studying their eigenfunctions' properties. In particular, the results in the Euclidean space are recaptured.
The original version of this article, published on 21 July 2022, unfortunately contained a mistake.Several words were missing from the text of the article.The original article has been corrected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.