Abstract. In early January 2021, Spain was affected by two extreme events – an unusually long cold spell and a heavy snowfall event associated with extratropical cyclone Filomena. For example, up to 50 cm of snow fell in Madrid and the surrounding areas in 4 days. Already during 9 days prior to the snowfall event, anomalously cold temperatures at 850 hPa and night frosts prevailed over large parts of Spain. During this period, anomalously cold and dry air was transported towards Spain from central Europe and even from the Barents Sea. The storm Filomena, which was responsible for major parts of the snowfall event, developed from a precursor low-pressure system over the central North Atlantic. Filomena intensified due to interaction with an upper-level potential vorticity (PV) trough, which was the result of anticyclonic wave breaking over Europe. In turn, this wave breaking was related to an intense surface anticyclone and upper-level ridge, whose formation was strongly influenced by a warm conveyor belt outflow of a cyclone off the coast of Newfoundland. The most intense snowfall occurred on 09 January and was associated with a sharp air mass boundary with an equivalent potential temperature difference at 850 hPa across Spain exceeding 20 K. Overall, the combination of pre-existing cold surface temperatures, the optimal position of the air mass boundary, and the dynamical forcing for ascent induced by Filomena and its associated upper-level trough were all essential – and in parts physically independent – ingredients for this extreme snowfall event to occur.