This study presents a comprehensive analysis of processes determining heat waves across different climates in Europe for the period 1979–2016. Heat waves are defined using a percentile‐based index and the main processes quantified along trajectories are adiabatic compression by subsidence and local and remote diabatic processes in the upper and lower troposphere. This Lagrangian analysis is complemented by an Eulerian calculation of horizontal temperature advection. During typical summers in Europe, one or two heat waves occur, with an average duration of five days. Whereas high near‐surface temperatures over Scandinavia are accompanied by omega‐like blocking structures at 500 hPa, heat waves over the Mediterranean are connected to comparably flat ridges. Tracing air masses backwards from the heat waves, we identify three trajectory clusters with coherent thermodynamic characteristics, vertical motions, and geographic origins. In all regions, horizontal temperature advection is almost negligible. In two of the three clusters, subsidence in the free atmosphere is very important in establishing high temperatures near the surface, while the air masses in the third cluster are warmed primarily due to diabatic heating near the surface. Large interregional differences occur between the British Isles and western Russia. Over the latter region, near‐surface transport and diabatic heating appear to be very important in determining the intensity of the heat waves, whereas subsidence and adiabatic warming are of first‐order importance for the British Isles. Although the large‐scale pattern is quasistationary during heat wave days, new air masses are entrained steadily into the lower troposphere during the life cycle of a heat wave. Overall, the results of the present study provide a guideline as to which processes and diagnostics weather and climate studies should focus on to understand the severity of heat waves.
Strong winds, turbulence, convective uplift, and electric charge may keep giant particles aloft.
This paper analyses the late summer heatwave over Europe in 2016. Central, western and southwestern Europe were primarily affected by the high temperatures. Seville, Spain, for example, experienced the highest September temperature on record on 5 September 2016, reaching a maximum of 44.8°C, and temperatures in Trier, Germany reached 34.2°C on 13 September 2016. The heatwave was marked by three distinct peaks, accompanied by record‐breaking values for 500hPa geopotential heights and, to a lesser extent, 850hPa temperatures. These peaks were associated with the arrival of high‐amplitude Rossby wave packets in western Europe. The latter originated several days before the event over western North America. During the three peaks of the heatwave, subsidence and the ensuing adiabatic compression in the free atmosphere in combination with boundary layer processes, rather than local temperature advection, were instrumental in the occurrence of the extreme temperature episodes.
In both 2003 and 2018 a heatwave in Scandinavia in July was followed by a heatwave in Central Europe in August. Whereas the transition occurred abruptly in 2003, it was gradual in 2018 with a 12‐day period of concurrent heatwaves in both regions. This study contrasts these two events in the context of a heatwave climatology to elucidate the dynamics of both concurrent and sequential heatwaves. Central European and, in particular, concurrent heatwaves are climatologically associated with weak pressure gradient (WPG) events over Central Europe, which indicate the absence of synoptic activity over this region. One synoptic pattern associated with such events is Scandinavian blocking. This pattern is at the same time conducive to heatwaves in Scandinavia, thereby providing a mechanism by which Scandinavian and Central European heatwaves can co‐occur. Further, the association of WPG events with Scandinavian blocking constitutes a mechanism that allows heatwaves to grow beyond the perimeter of the synoptic system from which they emanated. A trajectory analysis of the source regions of the low‐level air incorporated in the heatwaves indicates rapidly changing air mass sources throughout the heatwaves in both regions, but no recycling of heat from one heatwave to the other. This finding is line with a composite analysis indicating that transitions between Scandinavian and Central European heatwaves are merely a random coincidence of heatwave onset and decay.
<p><strong>Abstract.</strong> This study presents a Lagrangian analysis of upper-tropospheric anticyclones that are connected to surface heat waves in different European regions for the period 1979 to 2016. In order to elucidate the formation of these anticyclones and the role of diabatic processes, we trace air parcels backwards from the upper-tropospheric anticyclones and quantify the diabatic heating in these air parcels. Around 25&#8211;45&#8201;% of the air parcels are diabatically heated during the last three days prior to their arrival in the upper-tropospheric anticyclones and this amount increases to 35&#8211;50&#8201;% for the last seven days. The influence of diabatic heating is larger for heat wave-related anticyclones in northern Europe and western Russia and smaller in southern Europe. Interestingly, the diabatic heating occurs in two geographically separated air streams. Three days prior to arrival, one heating branch (western branch) is located above the western North Atlantic and the other heating branch (eastern branch) is located to the southwest of the target upper-tropospheric anticyclone. The diabatic heating in the western branch is related to warm conveyor belts in North Atlantic cyclones upstream of the evolving upper-level ridge. In contrast, the eastern branch is diabatically heated by convection, as indicated by elevated mixed-layer convective available potential energy along the western side of the matured upper-level ridge. Most European regions are influenced by both branches, whereas western Russia is predominantly affected by the eastern branch. The western branch predominantly affects the formation of the upper-tropospheric anticyclone, and therefore of the heat wave, whereas the eastern branch is more active during its maintenance. For long-lasting heat waves, the western branch regenerates. The results from this study show that the dynamical processes leading to heat waves may be sensitive to small-scale microphysical and convective processes, whose accurate representation in models is thus supposed to be crucial for heat wave predictions on weather and climate time scales.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.