The aim of this paper is to characterize the polycrystalline and vitreous phases in the As2S3-Sb2S3-Sb2Te3 systems using several techniques such as XRD, SEM, EDS, and micro-Raman spectroscopy. The As1.17S2.7Sb0.83Te0.40, As1.04S2.4Sb0.96Te0.60, As0.63S2.7Sb1.37Te0.30, and As0.56S2.4Sb1.44Te0.60 semiconductor chalcogenide bulk glasses were examined using Scanning Electron microscopy (SEM), Energy-Dispersive Spectroscopy (EDS), X-Ray diffraction (XRD) and micro-Raman analysis. The EDS quantitative and mapping analysis showed that for each investigated area, the identified elements were sulfur (S), arsenic (As), antimony (Sb) and tellurium (Te). These elements are present in constant atomic percentages on the entire sample, showing a good homogeneity of the samples. The study of samples by the above-mentioned methods showed the presence of crystalline phases and amorphous phases with the polycrystalline inclusions corresponding to the structural units AsS3, Sb2S3, and Sb2Те3.