A new type of nanocomposites based on a high performance bisphenol-A phthalonitrile resin and surfacemodified alumina nanoparticles was prepared by a hot compression molding technique. The effect of adding different amounts of the reinforcing phase on the thermal and mechanical properties of the resulting nanocomposites was investigated. Thermogravimetric analysis showed that the starting decomposition temperatures and the residual weight at 8008C were highly improved upon adding the nanofillers. At 15 wt% nanoloading, the glass transition temperature and the storage modulus were considerably enhanced, reaching 3468C and 3.4 GPa, respectively. The tensile strength and modulus as well as the microhardness values increased with the increasing amount of the nanoparticles. The tensile modulus calculations were investigated using Series, Halpin-Tsai, and Kerner models. Haplin-Tsai model was found to reproduce the experimental data with the best accuracy. Estimation of the nanofillers shape factors for both Haplin-Tsai and Kerner models significantly improved the precision of the cited predictive models. The fractured surface of the nanocomposites analyzed by SEM exhibited homogeneous and rougher surfaces compared to that of the pristine resin. Finally, this new kind of nanocomposites is a highly attractive candidate for use in advanced technological applications such as the aerospace and military fields.POLYM. COMPOS., 00:000-000, 2015.