The mouse has become an indispensable and versatile model organism for the study of development, genetics, behavior, and disease. The application of comprehensive gene expression profiling technologies to compare normal and diseased tissues or to assess molecular alterations resulting from various experimental interventions has the potential to provide highly detailed qualitative and quantitative descriptions of these processes. Ideally, to interpret experimental data, the magnitude and diversity of gene expression for the system under study should be well characterized, yet little is known about the normal variation of mouse gene expression in vivo. To assess natural differences in murine gene expression, we used a 5406-clone spotted cDNA microarray to quantitate transcript levels in the kidney, liver, and testis from each of 6 normal male C57BL6 mice. We used ANOVA to compare the variance across the six mice to the variance among four replicate experiments performed for each mouse tissue. For the 6 kidney samples, 102 of 3,088 genes (3.3%) exhibited a statistically significant mouse variance at a level of 0.05. In the testis, 62 of 3,252 genes (1.9%) showed statistically significant variance, and in the liver, there were 21 of 2,514 (0.8%) genes with significantly variable expression. Immune-modulated, stress-induced, and hormonally regulated genes were highly represented among the transcripts that were most variable. The expression levels of several genes varied significantly in more than one tissue. These studies help to define the baseline level of variability in mouse gene expression and emphasize the importance of replicate microarray experiments.DNA microarray ͉ variation ͉ transcript ͉ ANOVA T he use of DNA microarrays to obtain qualitative and quantitative profiles of gene expression has increased dramatically over the past several years. Microarrays can provide rapid and accurate measurements of thousands of distinct transcripts simultaneously. Most of the microarray expression studies performed to date have used relatively controlled systems that are manipulable in vitro, such as single-cell organisms (e.g., yeast) and clonal cell lines (1-3). The technology has also been applied to more complex in vivo systems involving mammalian tissues and organs. Many of these studies have been performed by using the mouse as a model organism, in part because of the relative ease of genetic manipulation coupled with the extensive genomic, anatomical, and physiological synteny with humans.