1998
DOI: 10.1128/jvi.72.7.5383-5391.1998
|View full text |Cite
|
Sign up to set email alerts
|

Characterization of the Proline-Rich Region of Murine Leukemia Virus Envelope Protein

Abstract: Mammalian type C retroviral envelope proteins contain a variable proline-rich region (PRR), located between the N-terminal receptor-binding domain and the more highly conserved C-terminal portion of the surface (SU) subunit. We have investigated the role of the PRR in the function of murine leukemia virus (MuLV) envelope protein. In the MuLVs, the PRR contains a highly conserved N-terminal sequence and a hypervariable C-terminal sequence. Despite this variability, the amphotropic PRR could functionally substit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

1999
1999
2018
2018

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 57 publications
(1 citation statement)
references
References 45 publications
0
1
0
Order By: Relevance
“…While the gristly pathobiology of the tumor extracellular matrix (ECM), as well as the molecular mechanisms of retroviral vector-mediated gene transfer and expression, are beyond the scope of this focused review, the potential clinical implications of an ‘active’ tumor-targeted gene delivery vehicle are wide-ranging. Focusing on the abnormal collagenous proteins (i.e., lesion signature proteins) that are pathologically exposed during the process of tissue injury (such as balloon angioplasty), Hall and Gordon adaptively engineered a physiological surveillance function embodied within the complex structure of von Willebrand coagulation Factor (vWF), which normally guides platelets to sites of significant tissue injury, into the surface envelope protein (gp70) of the Moloney murine leukemia virus, thereby creating a desirable ‘gain-of-function’ (pathological-matrix-targeting), without impairing the natural receptor-mediated binding and entry of the targeted viral particles into target cells, thus preserving the efficiency of gene transfer ( 79 , 80 ). Eventually, in anticipation of human gene therapy applications, the enabling tumor-targeting gain-of-function, first established in rodents, was genetically engineered into the 4070A ‘amphotropic’ murine leukemia virus envelope protein that is capable of transducing human cells ( 81 , 82 ).…”
Section: Development Of a Targeted Retroviral Vector To Efficiently Dmentioning
confidence: 99%
“…While the gristly pathobiology of the tumor extracellular matrix (ECM), as well as the molecular mechanisms of retroviral vector-mediated gene transfer and expression, are beyond the scope of this focused review, the potential clinical implications of an ‘active’ tumor-targeted gene delivery vehicle are wide-ranging. Focusing on the abnormal collagenous proteins (i.e., lesion signature proteins) that are pathologically exposed during the process of tissue injury (such as balloon angioplasty), Hall and Gordon adaptively engineered a physiological surveillance function embodied within the complex structure of von Willebrand coagulation Factor (vWF), which normally guides platelets to sites of significant tissue injury, into the surface envelope protein (gp70) of the Moloney murine leukemia virus, thereby creating a desirable ‘gain-of-function’ (pathological-matrix-targeting), without impairing the natural receptor-mediated binding and entry of the targeted viral particles into target cells, thus preserving the efficiency of gene transfer ( 79 , 80 ). Eventually, in anticipation of human gene therapy applications, the enabling tumor-targeting gain-of-function, first established in rodents, was genetically engineered into the 4070A ‘amphotropic’ murine leukemia virus envelope protein that is capable of transducing human cells ( 81 , 82 ).…”
Section: Development Of a Targeted Retroviral Vector To Efficiently Dmentioning
confidence: 99%