The human oral cavity has an indigenous microbiota known to include a robust community of viruses. Very little is known about how oral viruses are spread throughout the environment or to which viruses individuals are exposed. We sought to determine whether shared living environment is associated with the composition of human oral viral communities by examining the saliva of 21 human subjects; 11 subjects from different households and 10 unrelated subjects comprising 4 separate households. Although there were many viral homologues shared among all subjects studied, there were significant patterns of shared homologues in three of the four households that suggest shared living environment affects viral community composition. We also examined CRISPR (clustered regularly interspaced short palindromic repeat) loci, which are involved in acquired bacterial and archaeal resistance against invading viruses by acquiring short viral sequences. We analyzed 2 065 246 CRISPR spacers from 5 separate repeat motifs found in oral bacterial species of Gemella, Veillonella, Leptotrichia and Streptococcus to determine whether individuals from shared living environments may have been exposed to similar viruses. A significant proportion of CRISPR spacers were shared within subjects from the same households, suggesting either shared ancestry of their oral microbiota or similar viral exposures. Many CRISPR spacers matched virome sequences from different subjects, but no pattern specific to any household was found. Our data on viromes and CRISPR content indicate that shared living environment may have a significant role in determining the ecology of human oral viruses.