Silver nanoparticles (AgNPs) were synthesised with hydrothermal autoclaving technique by using AgNO salt (silver precursor) at different concentrations (0.01, 0.1, 0.55, 1.1, 5.5, and 11 mM) and porcine skin (1% (w/v) ) gelatin polymeric matrix (reducing and stabiliser agent). The reaction was performed in an autoclave at 103 kPa and 121°C and the hydrothermal autoclaving exposure time and AgNO molar concentration were varied at a constant porcine skin gelatin concentration. The as-prepared AgNPs were characterised by UV-visible spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The antibacterial properties of AgNPs were tested against gram-positive and gram-negative bacteria. Furthermore, 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide and 2,2-diphenyl-1-picrylhydrazyl assays were used to test whether the synthesised AgNPs can be potentially applied in cancer therapy or used as an antioxidant. This approach is a promising simple route for synthesising AgNPs with a smaller average particle 10 nm diameter. Furthermore, AgNPs exhibited a good cytotoxicity activity, reducing the viability of the liver cancer cell line HepG2 with a moderate IC; they also showed a low-to-fair antioxidant activity. In addition, AgNPs had a remarkable preferential antibacterial activity against gram-positive bacteria than gram-negative bacteria. Therefore, these fabricated AgNPs can be used as an antibacterial agent in curative and preventive health care.