X-ray sources continue to advance in both intensity and temporal domains, thereby opening new ways to analyze the structure and properties of matter, provided that the resultant x-ray images can be efficiently and quantitatively recorded. In this perspective we focus on specific limitations of pixel area x-ray detectors. Although pixel area x-ray detectors have also advanced in recent years, many experiments are still detector limited. Specifically, there is need for detectors that can acquire successive images at GHz rates; detectors that can accurately measure both single photon and millions of photons per pixel in the same image at frame rates of hundreds of kHz; and detectors that efficiently capture images of very hard x-rays (20 keV to several hundred keV). The data volumes and data rates of state-of-the-art detection exceeds most practical data storage options and readout bandwidths, thereby necessitating on-line processing of data prior to, or in lieu of full frame readouts.