Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The success of online social platforms hinges on their ability to predict and understand user behavior at scale. Here, we present data suggesting that context-aware modeling approaches may offer a holistic yet lightweight and potentially privacy-preserving representation of user engagement on online social platforms. Leveraging deep LSTM neural networks to analyze more than 100 million Snapchat sessions from almost 80.000 users, we demonstrate that patterns of active and passive use are predictable from past behavior ( R 2 =0.345) and that the integration of context features substantially improves predictive performance compared to the behavioral baseline model ( R 2 =0.522). Features related to smartphone connectivity status, location, temporal context, and weather were found to capture non-redundant variance in user engagement relative to features derived from histories of in-app behaviors. Further, we show that a large proportion of variance can be accounted for with minimal behavioral histories if momentary context is considered ( R 2 =0.442). These results indicate the potential of context-aware approaches for making models more efficient and privacy-preserving by reducing the need for long data histories. Finally, we employ model explainability techniques to glean preliminary insights into the underlying behavioral mechanisms. Our findings are consistent with the notion of context-contingent, habit-driven patterns of active and passive use, highlighting the value of contextualized representations of user behavior for predicting user engagement on online social platforms.
The success of online social platforms hinges on their ability to predict and understand user behavior at scale. Here, we present data suggesting that context-aware modeling approaches may offer a holistic yet lightweight and potentially privacy-preserving representation of user engagement on online social platforms. Leveraging deep LSTM neural networks to analyze more than 100 million Snapchat sessions from almost 80.000 users, we demonstrate that patterns of active and passive use are predictable from past behavior ( R 2 =0.345) and that the integration of context features substantially improves predictive performance compared to the behavioral baseline model ( R 2 =0.522). Features related to smartphone connectivity status, location, temporal context, and weather were found to capture non-redundant variance in user engagement relative to features derived from histories of in-app behaviors. Further, we show that a large proportion of variance can be accounted for with minimal behavioral histories if momentary context is considered ( R 2 =0.442). These results indicate the potential of context-aware approaches for making models more efficient and privacy-preserving by reducing the need for long data histories. Finally, we employ model explainability techniques to glean preliminary insights into the underlying behavioral mechanisms. Our findings are consistent with the notion of context-contingent, habit-driven patterns of active and passive use, highlighting the value of contextualized representations of user behavior for predicting user engagement on online social platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.