The effectiveness of adaptive signal control strategies depends on the level of traffic observability, which is defined as the ability of a signal controller to estimate traffic state from connected vehicle (CV), loop detector data, or both. This paper aims to quantify the effects of traffic observability on network-level performance, traffic progression, and travel time reliability, and to quantify those effects for vehicle classes and major and minor directions in an arterial corridor. Specifically, we incorporated loop detector and CV data into an adaptive signal controller and measured several mobility- and event-based performance metrics under different degrees of traffic observability (i.e., detector-only, CV-only, and CV and loop detector data) with various CV market penetration rates. A real-world arterial street of 10 intersections in Seattle, Washington was simulated in Vissim under peak hour traffic demand level with transit vehicles. The results showed that a 40% CV market share was required for the adaptive signal controller using only CV data to outperform signal control with only loop detector data. At the same market penetration rate, signal control with CV-only data resulted in the same traffic performance, progression quality, and travel time reliability as the signal control with CV and loop detector data. Therefore, the inclusion of loop detector data did not further improve traffic operations when the CV market share reached 40%. Integrating 10% of CV data with loop detector data in the adaptive signal control improved traffic performance and travel time reliability.