Performance measures are essential for managing transportation systems, including signalized corridors. Coordination is an essential element of signal timing, enabling reliable progression of traffic along corridors. Improved progression leads to less user delay, which leads to user cost savings and lower vehicle emissions. This paper presents a comparative study of signal coordination assessment using four different technologies. These technologies include detector-based high-resolution controller data, Bluetooth/Wi-Fi sensors, segment-based probe vehicle data, and automated vehicle location data consisting of GPS-based vehicle trajectories, representing the data anticipated from emerging connected vehicle technologies. The data were compiled for a 4.2-mi corridor in Holland, Michigan. The results show that all of the data sources were able to identify, at some level, where coordination issues existed. Detector-based controller data and GPS-based vehicle trajectory data were capable of showing greater detail, and could be used to make offset adjustments. The paper concludes by demonstrating the identification of signal coordination issues with the use of visual performance metrics incorporating automated vehicle location (AVL) trajectory data.
Scalable and actionable performance measures for traffic signal systems provide opportunities for practitioners to measure and improve the transportation network. Historically, traffic signal improvements have relied on scheduled signal retiming based on limited data collection, or on the public to call and alert engineers of an issue. This inefficient method of improving signal timing led to the creation of automated traffic signal performance measures (ATSPMs). These metrics rely on expensive infrastructure, including detection and communications, which has produced barriers for numerous agencies to fully adopt. Recently, third-party data providers have begun to release vehicle trajectory data, which allows for enhanced signal metrics with no investment in physical equipment. The purpose of this study is to demonstrate the use of these data and summarize the scalability of the created metrics. This work builds on previous efforts to quantify signal performance on nine intersections in Michigan, U.S. Ten signalized corridors in Columbus, Ohio, were chosen to scale a performance assessment using crowdsourced trajectory data. A total of 136 intersections were assessed in 2-h intervals using data from all weekdays in 2017. High-level corridor summary metrics including average percent of vehicles stopping (18%–32%), average delay (9.4–20.5 s), and level of travel time reliability (1.23–2.73) were calculated for each corridor direction. Intersection-level metrics were also introduced, which can be used by practitioners to identify problems, improve signal timings, and prioritize future infrastructure investments.
Probe vehicle trajectory data has the potential to transform the current practice of traffic signal optimization. Current scalable trajectory data is limited in both the penetration rate and the ping frequency, or the length of time between vehicle waypoints. This paper introduces a methodology to create binary vehicle trajectories which can be used in a neural network to predict when vehicles will arrive at a virtual detector. The methodology allows for vehicles with ping frequencies of up to 60 s to be utilized for the optimization of offsets at signalized intersections. A nine-signal corridor in west Michigan was used to test the proposed methodology. The neural network was compared to traditional linear interpolation strategies and found to improve the root mean squared error of the arrival times by up to 6.18 s. Using the virtual detector data stacked over time to optimize the offsets of the corridor resulted in 77% of the benefit of an offset optimization performed with continuously collected high resolution signal controller data. In the era of big data, this alternative approach can assist with the large-scale implementation of traffic signal performance measures for improved operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.