On the demand of single‐photon entangled light sources and high‐sensitivity probes in the fields of quantum information processing, weak magnetic field detection and biosensing, the nitrogen vacancy (NV) color center is very attractive and has been deeply and intensively studied, due to its convenience of spin initialization, operation, and optical readout combined with long coherence time in the ambient environment. Although the application prospect is promising, there are still some problems to be solved before fully exerting its characteristic performance, including enhancement of emission of NV centers in certain charge state (NV− or NV0), obtaining indistinguishable photons, and improving of collecting efficiency for the photons. Herein, the research progress in these issues is reviewed and commented on to help researchers grasp the current trends. In addition, the development of emerging color centers, such as germanium vacancy defects, and rare‐earth dopants, with great potential for various applications, are also briefly surveyed.