In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values in a CT image (i.e. CT number values), depending on the materials’ mass density. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT (DECT), an additional attenuation measurement is obtained with a second x-ray spectrum (i.e. a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this work, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches described. In addition, current and evolving clinical applications are introduced.