Light‐emitting diodes (LEDs) based on colloidal quantum‐dots (QDs) such as CdSe, InP, and ZnSeTe feature a unique advantage of narrow emission linewidth of ≈20 nm, which can produce highly accurate colors, making them a highly promising technology for the realization of displays with Rec. 2020 color gamut. With the rapid development in the past decades, the performances of red and green QLEDs have been remarkably improved, and their efficiency and lifetime can almost meet industrial requirements. However, the industrialization of QLED displays still faces many challenges; for example, (1) the device mechanisms including the charge injection/transport/leakage, exciton quenching, and device degradation are still unclear, which fundamentally limit QLED performance improvement; (2) the blue performances including the efficiency, chromaticity, and stability are relatively low, which are still far from the requirements of practical applications; (3) the color patterning processes including the ink‐jet printing, transfer printing, and photolithography are still immature, which restrict the manufacturing of high resolution full‐color QLED displays. Here, the recent advancements attempting to address the above challenges of QLED displays are specifically reviewed. After a brief overview of QLED development history, device structure/principle, and performances, the main focus is to investigate the recent discoveries on device mechanisms with an emphasis on device degradation. Then recent progress is introduced in blue QLEDs and color patterning. Finally, the opportunities, challenges, solutions, and future research directions of QLED displays are summarized.