Electric vehicles are a mobility innovation that can help significantly reduce greenhouse gas emissions and mitigate climate change. However, increasing numbers of electric vehicles require the construction of a dense charging infrastructure with a sufficient number of chargers. Based on the identified requirements for existing electric vehicle users and potential new customers, the paper proposes a charging point model for an urban area equipped with a local transformer station and a sufficient number of low-power chargers. In particular, the model focuses on efficient use of chargers throughout the day, considering private rental of chargers paid by residents in the evening. The model uses an optimization method that compares the non-covered fixed costs due to unsold electricity to nonresidents and the annualized costs of building an additional transformer. The proposed optimal charging point solution was tested in a case study using real data capturing users’ habits and their arrivals in and departures from the car park. As our model results show, the great benefit of a park-and-ride car park equipped with chargers consists of a simple increase in car park efficiency, ensuring sufficient numbers of private charging lots, optimizing operating costs, and supporting the development of electromobility.