2020
DOI: 10.3390/sym12030422
|View full text |Cite
|
Sign up to set email alerts
|

Chebyshev-Type Integral Inequalities for Continuous Fields of Operators Concerning Khatri–Rao Products and Synchronous Properties

Abstract: We consider bounded continuous fields of self-adjoint operators which are parametrized by a locally compact Hausdorff space Ω equipped with a finite Radon measure μ . Under certain assumptions on synchronous Khatri–Rao property of the fields of operators, we obtain Chebyshev-type inequalities concerning Khatri–Rao products. We also establish Chebyshev-type inequalities involving Khatri–Rao products and weighted Pythagorean means under certain assumptions of synchronous monotone property of the field… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?