We introduce the notion of Khatri-Rao product for operator matrices acting on the direct sum of Hilbert spaces. This notion generalizes the tensor product and Hadamard product of operators and the Khatri-Rao product of matrices. We investigate algebraic properties, positivity, and monotonicity of the Khatri-Rao product. Moreover, there is a unital positive linear map taking Tracy-Singh products to Khatri-Rao products via an isometry.
<abstract><p>We investigate the Riccati matrix equation $ X A^{-1} X = B $ in which the conventional matrix products are generalized to the semi-tensor products $ \ltimes $. When $ A $ and $ B $ are positive definite matrices satisfying the factor-dimension condition, this equation has a unique positive definite solution, which is defined to be the metric geometric mean of $ A $ and $ B $. We show that this geometric mean is the maximum solution of the Riccati inequality. We then extend the notion of the metric geometric mean to positive semidefinite matrices by a continuity argument and investigate its algebraic properties, order properties and analytic properties. Moreover, we establish some equations and inequalities of metric geometric means for matrices involving cancellability, positive linear map and concavity. Our results generalize the conventional metric geometric means of matrices.</p></abstract>
In this paper, we establish several integral inequalities of Chebyshev type for bounded continuous fields of Hermitian operators concerning Tracy-Singh products and weighted Pythagorean means. The weighted Pythagorean means considered here are parametrization versions of three symmetric means: the arithmetic mean, the geometric mean, and the harmonic mean. Every continuous field considered here is parametrized by a locally compact Hausdorff space equipped with a finite Radon measure. Tracy-Singh product versions of the Chebyshev-Grüss inequality via oscillations are also obtained. Such integral inequalities reduce to discrete inequalities when the space is a finite space equipped with the counting measure. Moreover, our results include Chebyshev-type inequalities for tensor product of operators and Tracy-Singh/Kronecker products of matrices.
We consider bounded continuous fields of self-adjoint operators which are parametrized by a locally compact Hausdorff space Ω equipped with a finite Radon measure μ . Under certain assumptions on synchronous Khatri–Rao property of the fields of operators, we obtain Chebyshev-type inequalities concerning Khatri–Rao products. We also establish Chebyshev-type inequalities involving Khatri–Rao products and weighted Pythagorean means under certain assumptions of synchronous monotone property of the fields of operators. The Pythagorean means considered here are three classical symmetric means: the geometric mean, the arithmetic mean, and the harmonic mean. Moreover, we derive the Chebyshev–Grüss integral inequality via oscillations when μ is a probability Radon measure. These integral inequalities can be reduced to discrete inequalities by setting Ω to be a finite space equipped with the counting measure. Our results provide analog results for matrices and integrable functions. Furthermore, our results include the results for tensor products of operators, and Khatri–Rao/Kronecker/Hadamard products of matrices, which have been not investigated in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.