The differences in the composition of essential oils obtained from the aerial parts of six Ferula species viz., F. caratavica (Fc), F. kuchistanica (Fk), F. pseudoreoselinum (Fp), F. samarcandica (Fs), F. tenuisecta (Ft) and F. varia (Fv) were detected both qualitatively and quantitatively using GC-MS and GC-FID analyses. One hundred and six metabolites were identified that account for 92.1, 96.43, 87.43, 95.95, 92.90 and 89.48% of Fc, Fk, Fp, Fs, Ft and Fv whole essential oils, respectively. The data from the GC-MS analyses were subjected to unsupervised pattern recognition chemometric analysis utilizing principal component analysis (PCA) to improve the visualization of such differences among the six species. Fk and Ft are very closely related to each other and were gathered together in one cluster. The antioxidant potential was assessed in vitro using different assays including 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing power (FRAP) and phosphomolybdenum (PM) assays. Ft and Fp exhibited the most notable antioxidant properties as evidenced by their pronounced activities in most of the antioxidant assays performed, followed by Fc. Fk showed the most effective tyrosinase inhibitory potential, which was estimated as 119.67 mgKAE/g oil, while Fp exhibited the most potent α-amylase inhibitory potential, which was equivalent to 2.61 mmol ACAE/g oil. Thus, it was concluded that Ferula species could serve as a promising natural antioxidant drug that could be included in different products and spices to alleviate hyperglycemia and used as a natural ingredient in pharmaceutical cosmetics to counteract hyperpigmentation.