This work aimed to evaluate the effect of carrier agents containing maltodextrin and protein, represented by hydrolyzed collagen on the spray drying process of cocona (Solanum sessiliflorum Dunal), and on the properties of the resulting powders. We used pre-established proportions between the solids of cocona pulp and the carrier agents (P:CA), and among carrier agents themselves, maltodextrin and hydrolyzed collagen, (MD:HC). The process was carried out in a spray dryer at an inlet air temperature of 120 ºC. We prepared twelve feed solutions containing 20% of total solids, with P:CA ratios of 1:3, 1:4, 1:5 and 1:6, and MD:HC ratios of 0:100, 50:50, and 100:0. Solids recovery was obtained for the evaluation of the spray drying process. The cocona pulp powders were analyzed for moisture content, water activity, particle size distribution, mean particle diameter, chemical structure (FTIR) and color. For a P:CA of 1:6, for the sample formulated with hydrolyzed collagen only, solids recovery (96.2%) was much higher than that of the sample with maltodextrin only (39.2%). The chemical structure of cocona powders can be considered a sign of a good encapsulation process. The color of the cocona pulp powder was similar to that of the carrier agents. The formulation with highest content of hydrolyzed collagen improved the recovery of solids, guaranteed the cocona pulp encapsulation, and obtained fruit powders with bioactive properties.