The cooperative interplay
between the functional devices of a preorganized
active site is fundamental to enzyme catalysis. An in-depth understanding
of this phenomenon is central to elucidating the remarkable efficiency
of natural enzymes and provides an essential benchmark for enzyme
design and engineering. Here, we study the functional interconnectedness
of the catalytic nucleophile (His18) in an acid phosphatase by analyzing
the consequences of its replacement with aspartate. We present crystallographic,
biochemical, and computational evidence for a conserved mechanistic
pathway via a phospho-enzyme intermediate on Asp18. Linear free-energy
relationships for phosphoryl transfer from phosphomonoester substrates
to His18/Asp18 provide evidence for the cooperative interplay between
the nucleophilic and general-acid catalytic groups in the wild-type
enzyme, and its substantial loss in the H18D variant. As an isolated
factor of phosphatase efficiency, the advantage of a histidine compared
to an aspartate nucleophile is ∼10
4
-fold. Cooperativity
with the catalytic acid adds ≥10
2
-fold to that advantage.
Empirical valence bond simulations of phosphoryl transfer from glucose
1-phosphate to His and Asp in the enzyme explain the loss of activity
of the Asp18 enzyme through a combination of impaired substrate positioning
in the Michaelis complex, as well as a shift from early to late protonation
of the leaving group in the H18D variant. The evidence presented furthermore
suggests that the cooperative nature of catalysis distinguishes the
enzymatic reaction from the corresponding reaction in solution and
is enabled by the electrostatic preorganization of the active site.
Our results reveal sophisticated discrimination in multifunctional
catalysis of a highly proficient phosphatase active site.