The aim of the current study was to create a high quality growing medium blend that replaces 70 vol% peat with 40 vol% woody green compost and 30 vol% bark compost and organic fertilizers (i.e., blood meal and chitin), all locally sourced. A range of “woody composts”, i.e., green composts based on feedstock selection with mainly woody material from tree prunings, were produced for this purpose at green compost facilities. First, the woody composts were characterized chemically and biologically, including their microbial biomass and net N release. In comparison with regular green composts or vegetable, fruit and garden (VFG) waste composts, woody composts are more suitable for use in growing media due to their lower pH, EC and inorganic C content; however, the woody compost had a low N mineralization rate. Three types of composts supported a higher microbial biomass than wood fiber or bark compost. The additional mineral N release after 100 days for compost mixed with blood meal was tested for different VFG and green composts. A significantly higher additional net N release was measured for composts with higher initial mineral N concentrations (317 mg Nmin/L) as well as VFG composts (417 mg Nmin/L) than for green composts with a lower initial mineral N concentration (148 mg Nmin/L). In a last step, woody compost, bark compost, wood fiber, coir and peat were mixed in different ratios, resulting in six blends ranging from 100% peat-free to100% peat. Two batches of woody compost were compared, and the blends were mixed with blood meal or chitin. A strong effect of both the organic fertilizer and the blend composition on the mineral N release was observed, with a clear link between the microbial biomass and the net N release. There was a significant negative correlation between the net change in microbial biomass and the net N release (R = −0.85), which implies that a larger increase in microbial biomass during incubation with the organic fertilizer resulted in less N mineralization. The blends containing woody compost scored better for nitrification activity, as the NH4-N concentrations were lower in these than for the blends without woody compost. For the peat blends, no effect on the microbial biomass was observed after addition of organic fertilizers; mineral N did increase, however. Woody composts have the potential to be used in high vol% in growing media blends, but the blends still need further optimization when supplemented with organic fertilizers.