We present a detailed analysis of the X-ray properties of the cooling flows
in a sample of nearby, X-ray bright clusters of galaxies using high-quality
ASCA spectra and ROSAT X-ray images. We demonstrate the need for multiphase
models to consistently explain the spectral and imaging X-ray data for the
clusters. The mass deposition rates of the cooling flows, independently
determined from the ASCA spectra and ROSAT images, exhibit reasonable
agreement. We confirm the presence of intrinsic X-ray absorption in the
clusters using a variety of spectral models. We also report detections of
extended $100\mu$m infrared emission, spatially coincident with the cooling
flows, in several of the systems studied. The observed infrared fluxes and flux
limits are in good agreement with the predicted values due to reprocessed X-ray
emission from the cooling flows. We present precise measurements of the
abundances of iron, magnesium, silicon and sulphur in the central regions of
the Virgo and Centaurus clusters. Our results firmly favour models in which a
high mass fraction (70-80 per cent) of the iron in the X-ray gas in these
regions is due to Type Ia supernovae. Finally, we present a series of methods
which may be used to measure the ages of cooling flows from the X-ray data. The
results for the present sample of clusters indicate ages of between 2.5 and 7
Gyr. If the ages of cooling flows are primarily set by subcluster merger
events, then our results suggest that in the largest clusters, mergers with
subclusters with masses of approximately 30 per cent of the final cluster mass
are likely to disrupt cooling flows.Comment: Final version. MNRAS, in press. 36 pages, 9 figs, 14 tables in MNRAS
LaTex styl