4′-Phosphopantetheinyl
transferases (PPTases) catalyze a post-translational modification
essential to bacterial cell viability and virulence. We present the
discovery and medicinal chemistry optimization of 2-pyridinyl-N-(4-aryl)piperazine-1-carbothioamides, which exhibit submicromolar
inhibition of bacterial Sfp-PPTase with no activity toward the human
orthologue. Moreover, compounds within this class possess antibacterial
activity in the absence of a rapid cytotoxic response in human cells.
An advanced analogue of this series, ML267 (55), was
found to attenuate production of an Sfp-PPTase-dependent metabolite
when applied to Bacillus subtilis at
sublethal doses. Additional testing revealed antibacterial activity
against methicillin-resistant Staphylococcus aureus, and chemical genetic studies implicated efflux as a mechanism for
resistance in Escherichia coli. Additionally,
we highlight the in vitro absorption, distribution, metabolism, and
excretion and in vivo pharmacokinetic profiles of compound 55 to further demonstrate the potential utility of this small-molecule
inhibitor.