Root-knot nematodes (RKN), from the Meloidogyne genus, have a worldwide distribution and cause severe economic damage to many life-sustaining crops. Because of their lack of specificity and danger to the environment, most chemical nematicides have been banned from use. Thus, there is a great need for new and safe compounds to control RKN. Such research involves identifying beforehand the nematode proteins essential to the invasion. Since G protein-coupled receptors GPCRs are the target of a large number of drugs, we have focused our research on the identification of putative nematode GPCRs such as those capable of controlling the movement of the parasite towards (or within) its host. A datamining procedure applied to the genome of Meloidogyne incognita allowed us to identify a GPCR, belonging to the neuropeptide GPCR family that can serve as a target to carry out a virtual screening campaign. We reconstructed a 3D model of this receptor by homology modeling and validated it through extensive molecular dynamics simulations. This model was used for large scale molecular dockings which produced a filtered limited set of putative antagonists for this GPCR. Preliminary experiments using these selected molecules allowed the identification of an active compound, namely C260-2124, from the ChemDiv provider, which can serve as a starting point for further investigations.