Topological boundary and interface modes are generated in an acoustic waveguide by simple quasiperiodic patterning of the walls. The procedure opens many topological gaps in the resonant spectrum and qualitative as well as quantitative assessments of their topological character are supplied. In particular, computations of the bulk invariant for the continuum wave equation are performed. The experimental measurements reproduce the theoretical predictions with high fidelity. In particular, acoustic modes with high Q-factors localized in the middle of a breathable waveguide are engineered by a simple patterning of the walls.