We give an overview of the Integer Quantum Hall Effect. We propose a mathematical framework using Non-Commutative Geometry as defined by A. Connes. Within this framework, it is proved that the Hall conductivity is quantized and that plateaux occur when the Fermi energy varies in a region of localized states.PACS
A quantization theorem for the edge currents is proven for discrete magnetic half-plane operators. Hence the edge channel number is a valid concept also in presence of a disordered potential. Under a gap condition on the corresponding planar model, this quantum number is shown to be equal to the quantized Hall conductivity as given by the Kubo–Chern formula. For the proof of this equality, we consider an exact sequence of C*-algebras (the Toeplitz extension) linking the half-plane and the planar problem, and use a duality theorem for the pairings of K-groups with cyclic cohomology.
A random polymer model is a one-dimensional Jacobi matrix randomly composed of two finite building blocks. If the two associated transfer matrices commute, the corresponding energy is called critical. Such critical energies appear in physical models, an example being the widely studied random dimer model. It is proven that the Lyapunov exponent vanishes quadratically at a generic critical energy and that the density of states is positive there. Large deviation estimates around these asymptotics allow to prove optimal lower bounds on quantum transport, showing that it is almost surely overdiffusive even though the models are known to have pure-point spectrum with exponentially localized eigenstates for almost every configuration of the polymers. Furthermore, the level spacing is shown to be regular at the critical energy.
Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a Z 2 -invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.