We recently showed that blunt chest trauma reduced the expression of the myocardial oxytocin receptor (Oxtr), which was further aggravated by genetic deletion of the H2S-producing enzyme cystathionine γ-lyase (CSE). Exogenous H2S supplementation restored myocardial Oxtr expression under these conditions. Early life stress (ELS) is a risk factor for cardiovascular disease by affecting vascular and heart structures. Therefore, we tested the hypotheses that (i) ELS affects cardiac Oxtr and CSE expressions and (ii) Oxtr and CSE expression patterns depend on the duration of stress exposure. Thus, two stress paradigms were compared: long- and short-term separation stress (LTSS and STSS, respectively). Cardiac Oxtr expression was differentially affected by the two stress paradigms with a significant reduction after LTSS and a significant increase after STSS. CSE expression, which was significantly reduced in Oxtr-/- knockout hearts, was downregulated and directly related to Oxtr expression in LTSS hearts (r=0.657, p=0.012). In contrast, CSE expression was not related to Oxtr upregulation in STSS. Plasma Oxt levels were not affected by either ELS paradigm. The coincidence of LTSS-induced reduction of cardiac Oxtr and reduced CSE expression may suggest a novel pathophysiological link between early life adversities and increased risk for the development of cardiovascular disorders in adulthood.