While biological alterations associated with childhood maltreatment (CM) have been found in affected individuals, it remains unknown to what degree these alterations are biologically transmitted to the next generation. We investigated intergenerational effects of maternal CM on DNA methylation and gene expression in N = 113 mother-infant dyads shortly after parturition, additionally accounting for the role of the FKBP5 rs1360780 genotype. Using mass array spectrometry, we assessed the DNA methylation of selected stress-response-associated genes (FK506 binding protein 51 [FKBP5], glucocorticoid receptor [NR3C1], corticotropin-releasing hormone receptor 1 [CRHR1]) in isolated immune cells from maternal blood and neonatal umbilical cord blood. In mothers, CM was associated with decreased levels of DNA methylation of FKBP5 and CRHR1 and increased NR3C1 methylation, but not with changes in gene expression profiles. Rs1360780 moderated the FKBP5 epigenetic CMassociated regulation profiles in a gene × environment interaction. In newborns, we found no evidence for any intergenerational transmission of CM-related methylation profiles for any of the investigated epigenetic sites. These findings support the hypothesis of a long-lasting impact of CM on the biological epigenetic regulation of stress-response mediators and suggest for the first time that these specific epigenetic patterns might not be directly transmitted to the next generation. Childhood maltreatment (CM) is so far an underestimated global phenomenon present in all societies and social classes. CM comprises experiences of physical, sexual and emotional abuse, as well as physical and emotional neglect during childhood and adolescence and constitutes a major threat to the child's mental and physical development with long-term consequences for both mental and somatic health 1-4. The epigenetic alterations in DNA methylation occurring in the aftermath of CM are pivotal for the adaptation to the early life environment 5 , and can thereby affect gene expression levels 6 and molecular responses to environmental stressors. Epigenetic alterations within key player genes of the hypothalamic-pituitary-adrenal (HPA) axis, the main coordinator of the physiological stress response (Fig. 1), are discussed to biologically contribute to health consequences observed in CM-affected individuals 7,8. Accordingly, mounting evidence suggests that CM is associated with alterations in DNA methylation within the glucocorticoid receptor gene (NR3C1) 9-13 and its regulatory co-chaperone FK506-binding protein 51 (FKBP51), which is encoded by the FKBP5 gene 13,14. As depicted in Fig. 1, a balanced regulation between the GR
Childhood maltreatment (CM) comprises experiences of abuse and neglect during childhood. CM causes psychological as well as biological alterations in affected individuals. In humans, it is hardly explored whether these CM consequences can be transmitted directly on a biological level to the next generation. Here, we investigated the associations between maternal CM and mitochondrial bioenergetics (mitochondrial respiration and intracellular mitochondrial density) in immune cells of mothers and compared them with those of their newborns. In n = 102 healthy mother-newborn dyads, maternal peripheral blood mononuclear cells and neonatal umbilical cord blood mononuclear cells were collected and cryopreserved shortly after parturition to measure mitochondrial respiration and intracellular mitochondrial density with high-resolution respirometry and spectrophotometric analyses, respectively. Maternal CM was assessed with the Childhood Trauma Questionnaire. Maternal and neonatal mitochondrial bioenergetics were quantitatively comparable and positively correlated. Female newborns showed higher mitochondrial respiration compared to male newborns. Maternal CM load was significantly and positively associated with mitochondrial respiration and density in mothers, but not with mitochondrial respiration in newborns. Although maternal and neonatal mitochondrial bioenergetics were positively correlated, maternal CM only had a small effect on mitochondrial density in newborns, which was not significant in this study after adjustment for multiple comparisons. The biological relevance of our finding and its consequences for child development need further investigation in future larger studies. This study reports data on mitochondrial bioenergetics of healthy mother-newborn dyads with varying degrees of CM.
Experiencing maltreatment during childhood can have long-lasting consequences for both mental and physical health. Immune cell telomere length (TL) shortening might be one link between child maltreatment (CM) experiences and adverse health outcomes later in life. While the stress hormone cortisol has been associated with TL attrition, the attachment-related hormone oxytocin may promote resilience. In 15 mothers with and 15 age- and body mass index-matched mothers without CM, we assessed TL in peripheral blood mononuclear cells and selected immune cell subsets (monocytes, naive, and memory cytotoxic T cells) by quantitative fluorescence in situ hybridization, as well as peripheral cortisol and oxytocin levels. Memory cytotoxic T cells showed significantly shorter TL in association with CM, whereas TL in monocytes and naive cytotoxic T cells did not significantly differ between the two groups. Across both groups, cortisol was negatively associated with TL, while oxytocin was positively associated with TL in memory cytotoxic T cells. These results indicate that long-lived memory cytotoxic T cells are most affected by the increased biological stress state associated with CM. Keeping in mind the correlational and preliminary nature of the results, the data suggest that cortisol may have a damaging and oxytocin a protective function on TL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.