Mitochondrial dysfunction might have a central role in the pathophysiology of depression. Phenotypically, depression is characterized by lack of energy, concentration problems and fatigue. These symptoms might be partially explained by reduced availability of adenosine triphosphate (ATP) as a consequence of impaired mitochondrial functioning. This study investigated mitochondrial respiration in peripheral blood mononuclear cells (PBMCs), an established model to investigate the pathophysiology of depression. Mitochondrial respiration was assessed in intact PBMCs in 22 individuals with a diagnosis of major depression (MD) compared with 22 healthy age-matched controls using high-resolution respirometry. Individuals with MD showed significantly impaired mitochondrial functioning: routine and uncoupled respiration as well as spare respiratory capacity, coupling efficiency and ATP turnover-related respiration were significantly lower in the MD compared with the control group. Furthermore, mitochondrial respiration was significantly negatively correlated with the severity of depressive symptoms, in particular, with loss of energy, difficulties concentrating and fatigue. The results suggest that mitochondrial dysfunction contributes to the biomolecular pathophysiology of depressive symptoms. The decreased immune capability observed in MD leading to a higher risk of comorbidities could be attributable to impaired energy supply due to mitochondrial dysfunction. Thus mitochondrial respiration in PBMCs and its functional consequences might be an interesting target for new therapeutical approaches in the treatment of MD and immune-related comorbidities.
BackgroundEndocannabinoids (ECs) and related N-acyl-ethanolamides (NAEs) play important roles in stress response regulation, anxiety and traumatic memories. In view of the evidence that circulating EC levels are elevated under acute mild stressful conditions in humans, we hypothesized that individuals with traumatic stress exposure and post-traumatic stress disorder (PTSD), an anxiety disorder characterized by the inappropriate persistence and uncontrolled retrieval of traumatic memories, show measurable alterations in plasma EC and NAE concentrations.MethodsWe determined plasma concentrations of the ECs anandamide (ANA) and 2-arachidonoylglycerol (2-AG) and the NAEs palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamine (SEA), and N-oleoyldopamine (OLDA) by HPLC-MS-MS in patients with PTSD (n = 10), trauma-exposed individuals without evidence of PTSD (n = 9) and in healthy control subjects (n = 29). PTSD was diagnosed according to DSM-IV criteria by administering the Clinician Administered PTSD Scale (CAPS), which also assesses traumatic events.ResultsIndividuals with PTSD showed significantly higher plasma concentrations of ANA (0.48±0.11 vs. 0.36±0.14 ng/ml, p = 0.01), 2-AG (8.93±3.20 vs. 6.26±2.10 ng/ml, p<0.01), OEA (5.90±2.10 vs. 3.88±1.85 ng/ml, p<0.01), SEA (2.70±3.37 vs. 0.83±0.47, ng/ml, p<0.05) and significantly lower plasma levels of OLDA (0.12±0.05 vs. 0.45±0.59 ng/ml, p<0.05) than healthy controls. Moreover, PTSD patients had higher 2-AG plasma levels (8.93±3.20 vs. 6.01±1.32 ng/ml, p = 0.03) and also higher plasma concentrations of PEA (4.06±1.87 vs. 2.63±1.34 ng/ml, p<0.05) than trauma-exposed individuals without evidence of PTSD. CAPS scores in trauma-exposed individuals with and without PTSD (n = 19) correlated positively with PEA (r = 0.55, p = 0.02) and negatively with OLDA plasma levels (r = −0.68, p<0.01). CAPS subscores for intrusions (r = −0.65, p<0.01), avoidance (r = −0.60, p<0.01) and hyperarousal (r = −0.66, p<0.01) were all negatively related to OLDA plasma concentrations.ConclusionsPTSD appears to be associated with changes in plasma EC/NAE concentrations. This may have pathophysiological and diagnostic consequences but will need to be reproduced in larger cohorts.
An increasing interest in a healthy lifestyle raises questions about optimal body weight. Evidently, it should be clearly discriminated between the standardised “normal” body weight and individually optimal weight. To this end, the basic principle of personalised medicine “one size does not fit all” has to be applied. Contextually, “normal” but e.g. borderline body mass index might be optimal for one person but apparently suboptimal for another one strongly depending on the individual genetic predisposition, geographic origin, cultural and nutritional habits and relevant lifestyle parameters—all included into comprehensive individual patient profile. Even if only slightly deviant, both overweight and underweight are acknowledged risk factors for a shifted metabolism which, if being not optimised, may strongly contribute to the development and progression of severe pathologies. Development of innovative screening programmes is essential to promote population health by application of health risks assessment, individualised patient profiling and multi-parametric analysis, further used for cost-effective targeted prevention and treatments tailored to the person. The following healthcare areas are considered to be potentially strongly benefiting from the above proposed measures: suboptimal health conditions, sports medicine, stress overload and associated complications, planned pregnancies, periodontal health and dentistry, sleep medicine, eye health and disorders, inflammatory disorders, healing and pain management, metabolic disorders, cardiovascular disease, cancers, psychiatric and neurologic disorders, stroke of known and unknown aetiology, improved individual and population outcomes under pandemic conditions such as COVID-19. In a long-term way, a significantly improved healthcare economy is one of benefits of the proposed paradigm shift from reactive to Predictive, Preventive and Personalised Medicine (PPPM/3PM). A tight collaboration between all stakeholders including scientific community, healthcare givers, patient organisations, policy-makers and educators is essential for the smooth implementation of 3PM concepts in daily practice.
a b s t r a c tThe endocannabinoid system has been implicated in the regulation of the stress response, fear memory formation, and inflammatory processes. Posttraumatic stress disorder (PTSD) can result from exposure to extreme stress and is characterized by strong, associative memories for the traumatic events experienced. Furthermore, an elevated physical disease risk has been observed in PTSD, likely to be mediated by inflammatory processes. Therefore, altered endocannabinoid regulation can be expected in individuals with PTSD. However, attempts to assess PTSD-associated differences in the endocannabinoid system from human blood samples have provided inconsistent results, possibly due to fluctuating levels of endocannabinoids. In hair, these neuromodulators are accumulated over time and thus give access to a more stable and reliable assessment.We therefore investigated PTSD-associated differences in hair concentrations of endocannabinoids (Nacyl-ethanolamides palmitoylethanolamide [PEA], oleoylethanolamide [OEA] and stearoylethanolamide [SEA]) in 38 rebel war survivors from Northern Uganda suffering from PTSD and N = 38 healthy rebel war survivors without current and lifetime PTSD. PTSD diagnosis and symptom severity were assessed in structured clinical interviews employing the Posttraumatic Diagnostic Scale (PDS). A significant group difference was observed for OEA, with PTSD patients showing reduced hair concentrations. Regression analyses further revealed strong negative relationships between all investigated N-acyl-ethanolamides and symptom severity of PTSD. The observed reductions in endocannabinoids might account for the increased inflammatory state as well as for the failure to extinguish fear memories observed in PTSD. Our findings add to the accumulating evidence suggesting the endocannabinoid system as a target for pharmacological enhancement of exposure-based psychotherapy for PTSD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.